QED coupled to QEG

We discuss the non-perturbative renormalization group flow of Quantum Electrodynamics (QED) coupled to Quantum Einstein Gravity (QEG) and explore the possibilities for defining its continuum limit at a fixed point that would lead to a non-trivial, i.e. interacting field theory. We find two fixed points suitable for the Asymptotic Safety construction. In the first case, the fine-structure constant α vanishes at the fixed point and its infrared (“renormalized”) value is a free parameter not determined by the theory itself. In the second case, the fixed point value of α is non-zero, and its infrared value is a computable prediction of the theory.

[1]  H. Gies,et al.  Renormalization flow of QED. , 2004, Physical review letters.

[2]  de Calan C,et al.  Constructing the three-dimensional Gross-Neveu model with a large number of flavor components. , 1991, Physical review letters.

[3]  J. Donoghue,et al.  Running couplings and operator mixing in the gravitational corrections to coupling constants , 2010, 1011.3229.

[4]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[5]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[6]  Alfio Bonanno,et al.  Entropy signature of the running cosmological constant , 2007, 0706.0174.

[7]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[8]  S. Park,et al.  Dynamical symmetry breaking in four-fermion interaction models , 1991 .

[9]  D. Toms Cosmological constant and quantum gravitational corrections to the running fine structure constant. , 2008, Physical review letters.

[10]  Gawedzki,et al.  Exact renormalization for the Gross-Neveu model of quantum fields. , 1985, Physical review letters.

[11]  Augusto Sagnotti,et al.  The ultraviolet behavior of Einstein gravity , 1986 .

[12]  A. R. Pietrykowski Gauge dependence of gravitational correction to running of gauge couplings. , 2006, Physical review letters.

[13]  Giorgio Parisi,et al.  The theory of non-renormalizable interactions: The large N expansion , 1975 .

[14]  W. Boer,et al.  Consistency checks of grand unified theories , 1992 .

[15]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[16]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[17]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[18]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[19]  Spontaneous Mass Generation, Renormalization Group and Solvable U(N) -Symmetric Models , 1975 .

[20]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[21]  D. Toms Quantum gravity, gauge coupling constants, and the cosmological constant , 2009, 0908.3100.

[22]  Martin Reuter,et al.  Running gauge coupling in asymptotically safe quantum gravity , 2009, 0910.4938.

[23]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[24]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[25]  Yong Tang,et al.  Gravitational Contributions to Running of Gauge Couplings , 2008, 0807.0331.

[26]  Kupiainen,et al.  Renormalizing the nonrenormalizable. , 1985, Physical review letters.

[27]  A. V. D. Ven Two-loop quantum gravity , 1992 .

[28]  J. Ellis,et al.  On the Interpretation of Gravitational Corrections to Gauge Couplings , 2010, 1012.4353.

[29]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[30]  J. M. Irvine General Relativity – An Einstein Centenary Survey , 1980 .

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  Frank Saueressig,et al.  The universal RG machine , 2010, 1012.3081.

[33]  Absence of gravitational contributions to the running Yang–Mills coupling , 2007, 0710.1002.

[34]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[35]  D. Toms Quantum gravitational contributions to quantum electrodynamics , 2010, Nature.

[36]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[37]  A. Bonanno,et al.  Primordial entropy production and Λ-driven inflation from Quantum Einstein Gravity , 2008, 0803.2546.

[38]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[39]  M. Reuter,et al.  Non-perturbative QEG corrections to the Yang–Mills beta function , 2010, 1005.1488.

[40]  A. Kupiainen,et al.  Renormalization of a non-renormalizable quantum field theory , 1985 .

[41]  G. Hooft,et al.  One loop divergencies in the theory of gravitation , 1974 .

[42]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[43]  Sean P Robinson Two quantum effects in the theory of gravitation , 2005 .

[44]  F. Wilczek,et al.  Gravitational correction to running of gauge couplings. , 2005, Physical review letters.

[45]  S. Paycha,et al.  Geometric and Topological Methods for Quantum Field Theory , 2007 .

[46]  M. Gell-Mann,et al.  QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES , 1954 .

[47]  H. Stuben,et al.  Is there a Landau pole problem in QED , 1997, hep-th/9712244.

[48]  S. Weinberg Effective Field Theory, Past and Future , 2009, 0908.1964.

[49]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[50]  S. Sengupta,et al.  Accelerating Universe without Bigbang Singularity in Kalb-Ramond Cosmology , 2002 .

[51]  D. Toms Quantum gravity and charge renormalization , 2007, 0708.2990.

[52]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[53]  On the Triviality of Textbook Quantum Electrodynamics , 2001, hep-lat/0009029.