Ionospheric Data Assimilation Three‐Dimensional (IDA3D): A global, multisensor, electron density specification algorithm

[1] With the advent of the Global Positioning System (GPS) measurements (from both ground-based and satellite-based receivers), the number of available ionospheric measurements has dramatically increased. Total electron content (TEC) measurements from GPS instruments augment observations from more traditional ionospheric instruments like ionospheric sounders and Langmuir probes. This volume of data creates both an opportunity and a need for the observations to be collected into coherent synoptic scale maps. This paper describes the Ionospheric Data Assimilation Three-Dimensional (IDA3D), an ionospheric objective analysis algorithm. IDA3D uses a three-dimensional variational data assimilation technique (3DVAR), similar to those used in meteorology. IDA3D incorporates available data, the associated data error covariances, a reasonable background specification, and the expected background error covariance into a coherent specification on a global grid. It is capable of incorporating most electron density related measurements including GPS-TEC measurements, low-Earth-orbiting “beacon” TEC, and electron density measurements from radars and satellites. At present, the background specification is based upon empirical ionospheric models, but IDA3D is capable of using any global ionospheric specification as a background. In its basic form, IDA3D produces a spatial analysis of the electron density distribution at a specified time. A time series of these specifications can be created using past specifications to determine the background for the current analysis. IDA3D specifications are able to reproduce dynamic features of electron density, including the movement of the auroral boundary and the strength of the trough region.

[1]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[2]  C. M. Rush,et al.  An ionospheric observation network for use in short-term propagation predictions , 1976 .

[3]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[4]  L. Bossy,et al.  International Reference Ionosphere: Past, present, and future. I - Electron density. II - Plasma temperatures, ion composition and ion drift , 1993 .

[5]  Paul D. Craven,et al.  Global Core Plasma Model , 2000 .

[6]  Karl Rawer,et al.  International reference ionosphere - past, present, and future: II. Plasma temperatures, ion composition and ion drift , 1993 .

[7]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[8]  Xiaoqing Pi,et al.  Development of the Global Assimilative Ionospheric Model , 2004 .

[9]  Jaume Sanz,et al.  Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information , 2003 .

[10]  Roger Daley,et al.  NAVDAS Source Book 2000: NRL Atmospheric Variational Data Assimilation System , 2000 .

[11]  Michael H. Reilly,et al.  Ionospheric specification from GPS data and the RIBG ionospheric propagation model , 1997 .

[12]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[13]  Dale N. Anderson,et al.  Parameterized ionospheric model: A global ionospheric parameterization based on first principles models , 1995 .

[14]  W. Menke Geophysical data analysis , 1984 .

[15]  Steven J Franke,et al.  Ionospheric tomography: its limitations and reconstruction methods , 1994 .

[16]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[17]  Xiaoqing Pi,et al.  COSMIC GPS Ionospheric Sensing and Space Weather , 2000 .

[18]  Todd Lauderdale,et al.  IRI data ingestion and ionospheric tomography , 2001 .

[19]  T. Raymund Comparisons of several ionospheric tomography algorithms , 1995 .

[20]  G. S. Bust,et al.  Mid‐America Computerized Ionospheric Tomography Experiment (MACE '93) , 1995 .

[21]  S. E. Pryse,et al.  Experimental ionospheric tomography with ionosonde input and EISCAT verification , 1993 .

[22]  Timothy Fuller-Rowell,et al.  Global Assimilation of Ionospheric Measurements (GAIM) , 2001 .

[23]  Jaume Sanz,et al.  Improving the real-time ionospheric determination from GPS sites at very long distances over the equator , 2002 .

[24]  D. Bilitza,et al.  International Reference Ionosphere - Past, Present, Future , 1993 .

[25]  W. B. Gail,et al.  A statistical characterization of local mid‐latitude total electron content , 1993 .

[26]  Jeffrey P. Thayer,et al.  Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations , 2002 .

[27]  G. S. Kent,et al.  A Laser Radar for Atmospheric Studies , 1967 .

[28]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[29]  R. A. Panofsky,et al.  OBJECTIVE WEATHER-MAP ANALYSIS , 1949 .

[30]  Jeffrey Robert Austen,et al.  Ionospheric imaging using computerized tomography , 1988 .

[31]  Thomas L. Gaussiran,et al.  Verification of ionospheric sensors , 2001 .

[32]  Jaume Sanz,et al.  Combining ionosonde with ground GPS data for electron density estimation , 2003 .

[33]  James A. Secan,et al.  Application of stochastic inverse theory to ionospheric tomography , 1992 .

[34]  C.,et al.  Analysis methods for numerical weather prediction , 2022 .

[35]  J. A. Cook,et al.  Application of ionospheric tomography to single‐site location range estimation , 1994, Int. J. Imaging Syst. Technol..

[37]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[38]  Jaume Sanz,et al.  New approaches in global ionospheric determination using ground GPS data , 1999 .

[39]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[40]  James A. Secan,et al.  Tomography of the ionosphere: Four‐dimensional simulations , 1998 .

[41]  Raymond G. Roble,et al.  A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km) , 1994 .

[42]  R. Daley Atmospheric Data Analysis , 1991 .

[43]  W. C. Erickson The Maximum Resolution of a Radio Telescope Imposed by Corona Scattering , 1966 .