The effects of fermentation acids on bacterial growth.

Anaerobic habitats often have low pH and high concentrations of fermentation acids, and these conditions can inhibit the growth of many bacteria. The toxicity of fermentation acids at low pH was traditionally explained by an uncoupling mechanism. Undissociated fermentation acids can pass across the cell membrane and dissociate in the more alkaline interior, but there is little evidence that they can act in a cyclic manner to dissipate protonmotive force. Fermentation acid dissociation in the more alkaline interior causes an accumulation of the anionic species, and this accumulation is dependent on the pH gradient (delta pH) across the membrane. Fermentation acid-resistant bacteria have low delta pH and are able to generate ATP and grow with a low intracellular pH. Escherichia coli O157:H7 is able to decrease its intracellular pH to 6.1 before growth ceases, but this modest decrease in delta pH can only partially counteract the toxic effect of fermentation anion accumulation. Fermentation acid-resistant bacteria are in most cases Gram-positive bacteria with a high intracellular potassium concentration, and even acid-sensitive bacteria like E. coli K-12 have increased potassium levels when fermentation acids are present. Intracellular potassium provides a counteraction for fermentation acid anions, and allows bacteria to tolerate even greater amounts of fermentation anions. The delta pH-mediated anion accumulation provides a mechanistic explanation for the effect of fermentation acids on microbial ecology and metabolism.

[1]  D. R. Woods,et al.  The Clostridia and biotechnology , 1993 .

[2]  G. Bennett,et al.  Mechanisms of acid resistance in enterohemorrhagic Escherichia coli , 1996, Applied and environmental microbiology.

[3]  J. Russell A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on ion flux and protonmotive force. , 1987, Journal of animal science.

[4]  I. West,et al.  Proton/sodium ion antiport in Escherichia coli. , 1974, The Biochemical journal.

[5]  R M Macnab,et al.  Effects of pH and Repellent Tactic Stimuli on Protein Methylation Levels in Escherichia coli , 1982, Journal of bacteriology.

[6]  J. Woolcock Microbiology of animals and animal products , 1991 .

[7]  W. Konings,et al.  Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products , 1979 .

[8]  S. Schultz,et al.  Cation Transport in Escherichia coli , 1965, The Journal of general physiology.

[9]  M. Bohnhoff,et al.  RESISTANCE OF THE MOUSE'S INTESTINAL TRACT TO EXPERIMENTAL SALMONELLA INFECTION , 1964, The Journal of experimental medicine.

[10]  J. Russell Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation , 1991, Applied and environmental microbiology.

[11]  R. L. Baldwin,et al.  Comparison of Substrate Affinities Among Several Rumen Bacteria: a Possible Determinant of Rumen Bacterial Competition , 1979, Applied and environmental microbiology.

[12]  J. Russell Effect of extracellular pH on growth and proton motive force of Bacteroides succinogenes, a cellulolytic ruminal bacterium , 1987, Applied and environmental microbiology.

[13]  E. R. Kashket Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance , 1987 .

[14]  E. R. Kashket,et al.  Effects of potassium ions on the electrical and pH gradients across the membrane of Streptococcus lactis cells , 1977, Journal of bacteriology.

[15]  G. J. Banwart,et al.  Basic Food Microbiology , 1979 .

[16]  S. Dashper,et al.  Lactic acid excretion by Streptococcus mutans. , 1996, Microbiology.

[17]  C. Stewart Factors Affecting the Cellulolytic Activity of Rumen Contents , 1977, Applied and environmental microbiology.

[18]  T. Mitsuoka,et al.  Effect of Lactulose on the Composition and Metabolic Activity of the Human Faecal Flora , 1992 .

[19]  R. G. Kroll,et al.  The effect of food preservatives on pH homeostasis in Escherichia coli. , 1984, Journal of general microbiology.

[20]  H. Bahl,et al.  Microbial production of butanol acetone , 1988 .

[21]  M. Cooperstock,et al.  CHAPTER 4 – Intestinal Flora of Infants , 1983 .

[22]  J. Foster,et al.  Molecular responses of microbes to environmental pH stress. , 1995, Advances in microbial physiology.

[23]  E. R. Kashket The proton motive force in bacteria: a critical assessment of methods. , 1985, Annual review of microbiology.

[24]  B. Wood,et al.  Microbiology of Fermented Foods , 1997, Springer US.

[25]  C. W. Tabor,et al.  Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase , 1980, Journal of bacteriology.

[26]  J. L. Stokes FERMENTATION OF GLUCOSE BY SUSPENSIONS OF ESCHERICHIA COLI , 1949, Journal of bacteriology.

[27]  H. Drake,et al.  Acetogenic capacities and the anaerobic turnover of carbon in a kansas prairie soil , 1996, Applied and environmental microbiology.

[28]  S. Finegold,et al.  CHAPTER 1 – Normal Indigenous Intestinal Flora , 1983 .

[29]  J. Russell,et al.  Effects of carbonylcyanide‐m‐chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and K‐12: uncoupling versus anion accumulation , 1997 .

[30]  J. Russell,et al.  Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling , 1992 .

[31]  J. Russell,et al.  The effect of pH on ruminal methanogenesis , 1996 .

[32]  A. Driessen,et al.  Regulation of solute transport in streptococci by external and internal pH values. , 1987, Microbiological reviews.

[33]  S. Horinouchi,et al.  Cloning of genes responsible for acetic acid resistance in Acetobacter aceti , 1990, Journal of bacteriology.

[34]  T. A. Krulwich,et al.  Isolation and characterization of uncoupler-resistant mutants of Bacillus subtilis , 1987, Journal of bacteriology.

[35]  F. Harold,et al.  Lactic Acid Translocation: Terminal Step in Glycolysis by Streptococcus faecalis , 1974, Journal of bacteriology.

[36]  R. E. Hungate,et al.  The anaerobic mesophilic cellulolytic bacteria. , 1950, Bacteriological reviews.

[37]  M. Rogosa,et al.  A SELECTIVE MEDIUM FOR THE ISOLATION AND ENUMERATION OF ORAL AND FECAL LACTOBACILLI , 1951, Journal of bacteriology.

[38]  T. A. Krulwich,et al.  Uncoupler-resistant mutants of bacteria. , 1990, Microbiological reviews.

[39]  D. Savage Microbial ecology of the gastrointestinal tract. , 1977, Annual review of microbiology.

[40]  M. Wolin Volatile fatty acids and the inhibition of Escherichia coli growth by rumen fluid. , 1969, Applied microbiology.

[41]  C. Pothoulakis,et al.  Clostridium difficile colitis. , 1994, The New England journal of medicine.

[42]  M. Bohnhoff,et al.  RESISTANCE OF THE MOUSE'S INTESTINAL TRACT TO EXPERIMENTAL SALMONELLA INFECTION , 1964, The Journal of experimental medicine.

[43]  D. Hentges CHAPTER 14 – Role of the Intestinal Microflora in Host Defense against Infection , 1983 .

[44]  E I Garvie,et al.  Bacterial lactate dehydrogenases. , 1980, Microbiological reviews.

[45]  A. Dobson,et al.  The effect of absorption on the acidity of rumen contents , 1963, The Journal of physiology.

[46]  D. Conner,et al.  Growth and survival of Escherichia coli O157:H7 under acidic conditions , 1995, Applied and environmental microbiology.

[47]  L. Phillip,et al.  Comparative assessment of bacterial inoculation and propionic acid treatment of aerobic stability and microbial populations of ensiled high-moisture ear corn. , 1996, Journal of animal science.

[48]  R. Rolfe Role of volatile fatty acids in colonization resistance to Clostridium difficile , 1984, Infection and immunity.

[49]  T. Miller,et al.  Fermentation by the human large intestine microbial community in an in vitro semicontinuous culture system , 1981, Applied and environmental microbiology.

[50]  T. A. Krulwich,et al.  Mutants of Bacillus species isolated on the basis of protonophore resistance are deficient in fatty acid desaturase activity , 1991, Journal of bacteriology.

[51]  I. Booth,et al.  Regulation of cytoplasmic pH in bacteria. , 1985, Microbiological reviews.

[52]  W. Konings,et al.  Effects of potassium ions on proton motive force in Rhodobacter sphaeroides , 1988, Journal of bacteriology.

[53]  C. S. Pederson,et al.  Microbiology of food fermentations , 1979 .

[54]  R. L. Baldwin,et al.  Comparison of Maintenance Energy Expenditures and Growth Yields Among Several Rumen Bacteria Grown on Continuous Culture , 1979, Applied and environmental microbiology.

[55]  G. Sprott,et al.  Isolation and Characterization of Methanobacterium espanolae sp. nov. , a Mesophilic, Moderately Acidiphilic Methanogen? , 1990 .

[56]  R. E. Hungate Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes , 1969 .

[57]  J. Russell Intracellular pH of acid-tolerant ruminal bacteria , 1991, Applied and environmental microbiology.

[58]  A. Onderdonk,et al.  Shigella, indigenous flora interactions in mice. , 1972, The American journal of clinical nutrition.

[59]  Bryan Mp,et al.  Microbiological and physiological changes associated with acute indigestion in sheep. , 1952 .

[60]  E. Padan,et al.  pH homesstasis in bacteria , 1981 .

[61]  D. Savage CHAPTER 3 – Associations of Indigenous Microorganisms with Gastrointestinal Epithelial Surfaces , 1983 .

[62]  J. Russell,et al.  Regulation of lactate production in Streptococcus bovis: A spiraling effect that contributes to rumen acidosis. , 1985, Journal of dairy science.

[63]  G. Mahuzier,et al.  Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice , 1987, Infection and immunity.

[64]  J. Russell,et al.  The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. , 1997, Microbiology.

[65]  R. G. Kroll,et al.  The relationship between intracellular pH, the pH gradient and potassium transport in Escherichia coli. , 1983, The Biochemical journal.

[66]  A. Matin,et al.  Organic nutrition of chemolithotrophic bacteria. , 1978, Annual review of microbiology.

[67]  R. E. Hungate,et al.  The Roll-Tube Method for Cultivation of Strict Anaerobes , 1972 .

[68]  R. Shannon,et al.  The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands , 1996 .

[69]  T. N. González,et al.  Mu d-directed lacZ fusions regulated by low pH in Escherichia coli , 1987, Journal of bacteriology.

[70]  A. Dawson,et al.  Effects of lactulose and other laxatives on ileal and colonic pH as measured by a radiotelemetry device , 1974, Gut.

[71]  D. Lovley,et al.  Sulfate Reducers Can Outcompete Methanogens at Freshwater Sulfate Concentrations , 1983, Applied and environmental microbiology.

[72]  J. Foster,et al.  Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli , 1995, Journal of bacteriology.

[73]  L. Brandt,et al.  Escherichia coli 0157 : H 7 Infection in Humans , 2009 .

[74]  D. Wilson,et al.  Biochemistry and genetics of actinomycete cellulases. , 1992, Critical reviews in biotechnology.

[75]  A. Warner,et al.  Digestion and metabolism in the ruminant. , 1975 .

[76]  W. M. Ingledew,et al.  The acetone-butanol-ethanol fermentation. , 1988, Critical reviews in microbiology.

[77]  Eva R. Kashket,et al.  Intracellular Conditions Required for Initiation of Solvent Production by Clostridium acetobutylicum , 1986, Applied and environmental microbiology.

[78]  D. C. Church Livestock feeds and feeding , 1977 .

[79]  J. Bailey,et al.  Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli , 1995, Biotechnology and bioengineering.

[80]  H. Kaback CHAPTER 6 – Active Transport: Membrane Vesicles, Bioenergetics, Molecules, and Mechanisms , 1990 .

[81]  James M. Jay,et al.  Modern food microbiology , 1970 .

[82]  R. E. Hungate,et al.  The Rumen and Its Microbes , 2013 .

[83]  D. Boone,et al.  Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T , 1991 .

[84]  J. Russell,et al.  Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture , 1980, Applied and environmental microbiology.

[85]  J. Russell,et al.  Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation , 1991, Journal of bacteriology.

[86]  E. Galinski,et al.  Osmoadaptation in bacteria. , 1995, Advances in microbial physiology.

[87]  B. Thurston,et al.  Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus , 1993, Applied and environmental microbiology.

[88]  W. Sandine,et al.  Microbiology of foods , 1980 .

[89]  Michael K. Woolford,et al.  The silage fermentation , 1984 .

[90]  L. L. Slyter Influence of acidosis on rumen function. , 1976, Journal of animal science.

[91]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[92]  R. E. Hungate Evolution of a microbial ecologist. , 1979, Annual review of microbiology.

[93]  J. Yavitt,et al.  Methane production in contrasting wetland sites: Response to organic‐chemical components of peat and to sulfate reduction , 1990 .