Chemical Ordering Rather Than Random Alloying in SbAs

The semimetallic Group V elements display a wealth of correlated electron phenomena due to a small indirect band overlap that leads to relatively small, but equal, numbers of holes and electrons at the Fermi energy with high mobility. Their electronic bonding characteristics produce a unique crystal structure, the rhombohedral A7 structure, which accommodates lone pairs on each site. Here we show that the A7 structure can display chemical ordering of Sb and As, which were previously thought to mix randomly. Our structural characterization of the compound SbAs is performed by single-crystal and high-resolution synchrotron x-ray diffraction, and neutron and x-ray pair distribution function analysis. All least-squares refinements indicate ordering of Sb and As, resulting in a GeTe-type structure without inversion symmetry. High-temperature diffraction studies reveal an ordering transition around 550 K. Transport and infrared reflectivity measurements, along with first-principles calculations, confirm that SbAs is a semimetal, albeit with a direct band separation larger than that of Sb or As. Because even subtle substitutions in the semimetals, notably Bi_{1-x}Sb_x, can open semiconducting energy gaps, a further investigation of the interplay between chemical ordering and electronic structure on the A7 lattice is warranted.

[1]  J. Tominaga,et al.  Phase transition in crystalline GeTe: Pitfalls of averaging effects , 2010 .

[2]  D. Shoemaker,et al.  Total-scattering descriptions of local and cooperative distortions in the oxide spinel Mg 1-x Cu x Cr 2 O 4 with dilute Jahn-Teller ions , 2010, 1008.5363.

[3]  S. Louie,et al.  Ab initio calculations of pressure-induced structural phase transitions of GeTe , 2010 .

[4]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[5]  T. K. Bera,et al.  Soluble semiconductors AAsSe2 (A = Li, Na) with a direct-band-gap and strong second harmonic generation: a combined experimental and theoretical study. , 2010, Journal of the American Chemical Society.

[6]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[7]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[9]  O. Degtyareva,et al.  High-pressure structural studies of group-15 elements , 2004 .

[10]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[11]  U. Schwarz Metallic high-pressure modifications of main group elements , 2004 .

[12]  N. P. Stepanov Plasmon-phonon-polaritons in p-doped Bi-Sb alloys , 2004 .

[13]  U. Häussermann,et al.  Bi1−xSbxunder high pressure: Effect of alloying on the incommensurate Bi-III type composite structure , 2004 .

[14]  V. V. Postnikov,et al.  Effect of a pulsed magnetic field on the real solid-solution structure in the Sb-As system , 2003 .

[15]  Nicola A. Spaldin,et al.  First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb , 2003 .

[16]  F. Gervais Optical conductivity of oxides , 2002 .

[17]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[18]  V. Grabov,et al.  Reflection spectra of doped bismuth-antimony crystals in the far-infrared region of the spectrum , 2001 .

[19]  T. Proffen,et al.  Local Atomic Strain in ZnSe1 xTex from High Real Space Resolution Neutron Pair Distribution Function Measurements , 2000, cond-mat/0009364.

[20]  P. F. Peterson,et al.  PDFgetN: a user‐friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data , 2000 .

[21]  D. Bagayoko,et al.  Electronic structure and charge transfer in 3C- and 4H-SiC , 2000 .

[22]  Pascal Marchet,et al.  Optical conductivity of high-Tc cuprate thin films deposited by multi-target laser ablation , 2000 .

[23]  R. Hoffmann,et al.  What Determines the Structures of the Group 15 Elements , 1999 .

[24]  M. Thorpe,et al.  High Real-Space Resolution Measurement of the Local Structure of Ga{sub 1-x}In{sub x}As Using X-Ray Diffraction , 1999, cond-mat/9906099.

[25]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[26]  Christopher M Wolverton,et al.  First-principles theory of vibrational effects on the phase stability of Cu-Au compounds and alloys , 1998 .

[27]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[28]  N. Mōri,et al.  Structural and electrical properties of GeSe and GeTe at high pressure , 1997 .

[29]  R. Wentzcovitch,et al.  First principles investigation of the A7 to simple cubic transformation in As , 1997 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[33]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[34]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[35]  I. Karakaya,et al.  The asp (arsenicphosphorus) system , 1991 .

[36]  X. Gonze,et al.  First-principles study of As, Sb, and Bi electronic properties. , 1990, Physical review. B, Condensed matter.

[37]  Syassen,et al.  Rhombohedral to simple-cubic phase transition in arsenic under pressure. , 1990, Physical review. B, Condensed matter.

[38]  A. S. Mal’tsev,et al.  Dielectric permittivity of Bi and the alloys Bi1−xSbx doped by donor impurities , 1990 .

[39]  Rabe,et al.  Structural properties of GeTe at T=0. , 1987, Physical review. B, Condensed matter.

[40]  T. Chattopadhyay,et al.  Neutron diffraction study on the structural phase transition in GeTe , 1987 .

[41]  P. Littlewood The crystal structure of IV-VI compounds. I. Classification and description , 1980 .

[42]  H. Wiedemeier,et al.  Refinement of the structures of GeS, GeSe, SnS and SnSe , 1978 .

[43]  James R. Chelikowsky,et al.  Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds , 1978 .

[44]  G. Fisher,et al.  Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission , 1977 .

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  N. Economou,et al.  On the phase transformation of SnTe , 1975 .

[47]  A. Bloch,et al.  Quantum-Defect Electronegativity Scale for Nontransition Elements , 1974 .

[48]  D. Schiferl Bonding and crystal structures of average-valence- compounds: A spectroscopic approach , 1974 .

[49]  D. C. Emmony,et al.  Optical properties of thin films of antimony , 1974 .

[50]  E. Burstein,et al.  Raman observation of the ferroelectric phase transition in SnTe , 1974 .

[51]  A. Kidron,et al.  Long-range and short-range order in NiPt , 1974 .

[52]  G. Saunders Semimetals and narrow gap semiconductors , 1973 .

[53]  H. Riccius Plasma resonance reflection in arsenic , 1971 .

[54]  E. F. Steigmeier,et al.  Soft phonon mode and ferroelectricity in GeTe , 1970 .

[55]  S. K. Bahl,et al.  Amorphous versus Crystalline GeTe Films. III. Electrical Properties and Band Structure , 1970 .

[56]  G. Saunders,et al.  The Seebeck coefficient and the Fermi surface of antimony single crystals , 1967 .

[57]  Masanobu Ohyama Thermal Conductivity in Antimony-Arsenic System , 1967 .

[58]  Masanobu Ohyama Electrical Properties of Sb–As Alloys , 1966 .

[59]  G. S. Cooper,et al.  The seebeck coefficients of antimony and arsenic single crystals , 1965 .

[60]  G. S. Cooper,et al.  Electrical properties of arsenic-antimony alloys , 1965 .

[61]  L. Harris,et al.  Optical and Electrical Properties of Antimony Deposits , 1964 .

[62]  L. Muldawer,et al.  The continuous rhombohedral-gubic transformation in GeTe-SnTe alloys☆ , 1963 .

[63]  A. Jain Temperature Dependence of the Electrical Properties of Bismuth-Antimony Alloys , 1959 .

[64]  B. W. Roberts X-ray measurement of order in CuAu , 1954 .

[65]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[66]  D. Thompson,et al.  Thermoelectric properties of BiSb alloys , 1985 .

[67]  J. Issi Low-temperature Transport-properties of the Group-v Semimetals , 1979 .

[68]  Q. A. Mansuri CCLXXVI.—Equilibrium diagram of the system antimony–arsenic , 1928 .