Identification of meteorite source regions in the Solar System

Abstract Over the past decade there has been a large increase in the number of automated camera networks that monitor the sky for fireballs. One of the goals of these networks is to provide the necessary information for linking meteorites to their pre-impact, heliocentric orbits and ultimately to their source regions in the solar system. We re-compute heliocentric orbits for the 25 meteorite falls published to date from original data sources. Using these orbits, we constrain their most likely escape routes from the main asteroid belt and the cometary region by utilizing a state-of-the-art orbit model of the near-Earth-object population, which includes a size-dependence in delivery efficiency. While we find that our general results for escape routes are comparable to previous work, the role of trajectory measurement uncertainty in escape-route identification is explored for the first time. Moreover, our improved size-dependent delivery model substantially changes likely escape routes for several meteorite falls, most notably Tagish Lake which seems unlikely to have originated in the outer main belt as previously suggested. We find that reducing the uncertainty of fireball velocity measurements below  ∼ 0.1 km/s does not lead to reduced uncertainties in the identification of their escape routes from the asteroid belt and, further, their ultimate source regions. This analysis suggests that camera networks should be optimized for the largest possible number of meteorite recoveries with measured speed precisions of order 0.1 km/s.

[1]  P. Brown,et al.  The fall and recovery of the Tagish Lake meteorite , 2006 .

[2]  R. Clayton,et al.  The fall, recovery, and classification of the Park Forest meteorite , 2004 .

[3]  P. Spurný Recent fireballs photographed in central Europe , 1994 .

[4]  Peter Brown,et al.  Small Near-Earth Asteroids as a Source of Meteorites , 2015 .

[5]  Ian Halliday,et al.  The Innisfree Meteorite and the Canadian Camera Network , 1978 .

[6]  P. Brown,et al.  The orbit and atmospheric trajectory of the Peekskill meteorite from video records , 1994, Nature.

[7]  Chang-de,et al.  Kamacite and olivine in ordinary chondrites : Intergroup and intragroup relationships , 2002 .

[8]  D. Revelle,et al.  The orbit, atmospheric dynamics, and initial mass of the Park Forest meteorite , 2004 .

[9]  G. Herzog 1.13 – Cosmic-Ray Exposure Ages of Meteorites , 2007 .

[10]  Thomas H. Burbine,et al.  Mineralogies and source regions of near-Earth asteroids , 2013 .

[11]  J. Borovička,et al.  Bolides produced by impacts of large meteoroids into the Earth's atmosphere: comparison of theory with observations. I. Benesov bolide dynamics and fragmentation , 1998 .

[12]  Giovanni B. Valsecchi,et al.  Near earth objects, our celestial neighbors : opportunity and risk : proceedings of the 236th Symposium of the International Astronomical Union held in Prague, Czech Republic, August 14-18, 2006 , 2007 .

[13]  S. Marchi,et al.  On the origin of the Almahata Sitta meteorite and 2008 TC3 asteroid , 2012, 1206.3042.

[14]  J. Borovička,et al.  Analysis of instrumental observations of the Jesenice meteorite fall on April 9, 2009 , 2010 .

[15]  D. Vokrouhlický,et al.  Asteroidal source of L chondrite meteorites , 2009 .

[16]  J. Borovička,et al.  The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit , 2013 .

[17]  Tomas Kohout,et al.  Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite - insight into shock induced changes in asteroid regoliths , 2013, 1309.6081.

[18]  Z. Ceplecha Luminous efficiency based on photographic observations of the Lost City fireball and implications for the influx of interplanetary bodies onto Earth. , 1996 .

[19]  P. Bland,et al.  How to build a continental scale fireball camera network , 2017 .

[20]  Richard P. Binzel,et al.  The Near-Earth Object Population: Connections to Comets, Main-Belt Asteroids, and Meteorites , 2015 .

[21]  Michael J. Gaffey,et al.  Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites , 1998 .

[22]  P. Spurný Instrumentally documented meteorite falls: two recent cases and statistics from all falls , 2015, Proceedings of the International Astronomical Union.

[23]  D. Revelle,et al.  An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records , 2002 .

[24]  J. Borovička,et al.  The Morávka meteorite fall: 4. Meteoroid dynamics and fragmentation in the atmosphere , 2003 .

[25]  E. L. Fireman,et al.  Multiple fall of Príbram meteorites photographed. VII. The tritium and argon-39 in the Príbram meteorite , 1964 .

[26]  M. Granvik,et al.  A Dark Asteroid Family in the Phocaea Region , 2017, 1704.06088.

[27]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[28]  Z. Krzeminski,et al.  The fall of the Grimsby meteorite—I: Fireball dynamics and orbit from radar, video, and infrasound records , 2011 .

[29]  Ian A. Franchi,et al.  Maribo—A new CM fall from Denmark , 2012 .

[30]  G. Flynn,et al.  Physical properties of the stone meteorites: Implications for the properties of their parent bodies , 2017, Geochemistry.

[31]  R. Morris,et al.  Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body , 2015 .

[32]  P. Brown,et al.  Fall of the Grimsby H5 Chondrite , 2010 .

[33]  A. Rubin Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships , 1990 .

[34]  R. Wieler Cosmogenic Nuclides , 2020, Oxford Research Encyclopedia of Planetary Science.

[35]  D. Revelle,et al.  THE TAGISH LAKE METEORITE FALL: INTERPRETATION OF FIREBALL PHYSICAL CHARACTERISTICS , 2001 .

[36]  P. Verevs,et al.  Density, porosity and magnetic susceptibility of the Košice meteorite shower and homogeneity of its parent meteoroid , 2014, 1404.1245.

[37]  A. Harris,et al.  Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations , 2012 .

[38]  Mark L. Rivers,et al.  Characterization of Mason Gully (H5): The second recovered fall from the Desert Fireball Network , 2016 .

[39]  Robert Jedicke,et al.  Super-catastrophic disruption of asteroids at small perihelion distances , 2016, Nature.

[40]  P. Brown,et al.  Noble Gas Analysis of the Grimsby H Chondrite , 2010 .

[41]  Jürgen Oberst,et al.  Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite , 2003, Nature.

[42]  J. Borovička,et al.  Reanalysis of the Benešov bolide and recovery of polymict breccia meteorites – old mystery solved after 20 years , 2014 .

[43]  Z. Ceplecha Multiple fall of Přibram meteorites photographed. 1. Double-station photographs of the fireball and their relations to the found meteorites , 1961 .

[44]  Alessandro Morbidelli,et al.  Orbital and temporal distributions of meteorites originating in the asteroid belt , 1998 .

[45]  Andrew Steele,et al.  Radar-Enabled Recovery of the Sutter’s Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia , 2012, Science.

[46]  R. Wainscoat,et al.  Searching for the first near-Earth object family , 2012, 1207.0836.

[47]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[48]  S. N. Milam,et al.  The impact and recovery of asteroid 2008 TC3 , 2009, Nature.

[49]  L. Pesonen,et al.  Rock Magnetic Studies of the Neuschwanstein EL6 Chondrite : Implications on the Origin of its Natural Remanent Magnetization , 2010 .

[50]  R. Reedy,et al.  Exposure history of the Sutter's Mill carbonaceous chondrite , 2014 .

[51]  J. Borovička,et al.  Two Very Precisely Instrumentally Documented Meteorite Falls: Zdar nad Sazavou and Stubenberg - Prediction and Reality , 2016 .

[52]  Terence P. McClafferty,et al.  The Bunburra Rockhole meteorite fall in SW Australia: fireball trajectory, luminosity, dynamics, orbit, and impact position from photographic and photoelectric records , 2012 .

[53]  G. Dreibus,et al.  Mineralogy, chemistry, and irradiation record of Neuschwanstein (EL6) chondrite , 2010 .

[54]  Orbital and physical characteristics of meter-scale impactors from airburst observations , 2015, 1511.07479.

[55]  B. Girten,et al.  Fall, recovery, and characterization of the Novato L6 chondrite breccia , 2014 .

[56]  D. Revelle,et al.  Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere , 2005 .

[57]  J. A. Docobo,et al.  The Villalbeto de la Peña meteorite fall: I. Fireball energy, meteorite recovery, strewn field, and petrography , 2005 .

[58]  Orbit and dynamic origin of the recently recovered Annama's H5 chondrite , 2015, 1507.04342.

[59]  J. Licandro,et al.  Near-infrared spectroscopic survey of B-type asteroids: Compositional analysis , 2011 .

[60]  R. Macke Survey Of Meteorite Physical Properties Density, Porosity And Magnetic Susceptibility , 2010 .

[61]  R. E. Mccrosky,et al.  Lost City meteorite—Its recovery and a comparison with other fireballs , 1971 .

[62]  V. Porubčan,et al.  Mineralogy, petrography, geochemistry, and classification of the Košice meteorite , 2015 .

[63]  Peter S. Gural,et al.  Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization , 2013, Science.

[64]  D. Holdsworth,et al.  Physical characterization of a suite of Buzzard Coulee H4 chondrite fragments , 2013 .

[65]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[66]  Ian Halliday,et al.  Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids , 1996 .

[67]  A. Bischoff,et al.  The Almahata Sitta polymict breccia and the late accretion of asteroid 2008 TC3 , 2014 .

[68]  J. Borovička,et al.  The Morávka meteorite fall: 1. Description of the events and determination of the fireball trajectory and orbit from video records , 2003 .

[69]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[70]  P. Brown,et al.  Exposure history of the Peekskill (H6) meteorite , 1997 .

[71]  P. Brown,et al.  Video observations, atmospheric path, orbit and fragmentation record of the fall of the Peekskill meteorite. , 1996, Earth, moon, and planets.

[72]  M. Gritsevich,et al.  Orbit determination based on meteor observations using numerical integration of equations of motion , 2014 .

[73]  Zdenek Ceplecha,et al.  Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks , 1987 .

[74]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[75]  D. Britt,et al.  Internal structure and physical properties of the Asteroid 2008 TC3 inferred from a study of the Almahata Sitta meteorites , 2011 .

[76]  M. Baxter,et al.  RARE GASES IN THE LOST CITY AND SUCHY DUL METEORITES. , 1971 .

[77]  Z. Řanda,et al.  Jesenice—A new meteorite fall from Slovenia , 2011 .

[78]  K. Nishiizumi,et al.  Cosmogenic nuclides in Almahata Sitta ureilites: Cosmic‐ray exposure age, preatmospheric mass, and bulk density of asteroid 2008 TC3 , 2010 .

[79]  M. Caffee,et al.  Park Forest (L5) and the asteroidal source of shocked L chondrites , 2017 .

[80]  J. Borovička,et al.  Atmospheric trajectory and heliocentric orbit of the Ejby meteorite fall in Denmark on February 6, 2016 , 2017 .

[81]  A. Rivkin,et al.  Compositional differences between meteorites and near-Earth asteroids , 2008, Nature.

[82]  A. Rivkin The fraction of hydrated C-complex asteroids in the asteroid belt from SDSS data , 2012 .

[83]  G. Wetherill ASTEROIDAL SOURCE OF ORDINARY CHONDRITES , 1985 .

[84]  P. Povinec,et al.  Cosmogenic nuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations , 2015 .

[85]  I. Halliday,et al.  THE INNISFREE METEORITE FALL: A PHOTOGRAPHIC ANALYSIS OF FRAGMENTATION, DYNAMICS AND LUMINOSITY , 1981 .

[86]  E. Beshore,et al.  Debiased orbit and absolute-magnitude distributions for near-Earth objects , 2018, Icarus.

[87]  Terence P. McClafferty,et al.  An Anomalous Basaltic Meteorite from the Innermost Main Belt , 2009, Science.

[88]  P. Brown,et al.  Video observations, atmospheric path, orbit and fragmentation record of the fall of the Peekskill meteorite , 1996 .

[89]  P. Spurný,et al.  The atmospheric trajectory and heliocentric orbit of the Neuschwanstein meteorite fall on April 6, 2002 , 2002 .

[90]  J. Borovička,et al.  The instrumentally recorded fall of the Križevci meteorite, Croatia, February 4, 2011 , 2015 .

[91]  P. Wiegert,et al.  A numerical comparison with the Ceplecha analytical meteoroid orbit determination method , 2011 .

[92]  F. Wlotzka The Meteoritical Bulletin, No. 75, 1993 December , 1993 .

[93]  J. Wisdom Meteorite transport—Revisited , 2017 .

[94]  A. Tsuchiyama,et al.  Mineralogy and petrography of C asteroid regolith: The Sutter's Mill CM meteorite , 2014 .

[95]  Pavel Spurný,et al.  Automation of the Czech part of the European fireball network: equipment, methods and first results , 2006, Proceedings of the International Astronomical Union.

[96]  J. Borovička Properties of meteoroids from different classes of parent bodies , 2006, Proceedings of the International Astronomical Union.

[97]  J. Borovička,et al.  A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors , 2013, Nature.

[98]  Dorian G. W. Smith The mineral chemistry of the Innisfree meteorite , 1980 .

[99]  Pavel Spurný,et al.  The trajectory, structure and origin of the Chelyabinsk asteroidal impactor , 2013, Nature.

[100]  L. Walter,et al.  CHEMISTRY AND MINERALOGY OF THE LOST CITY METEORITE. , 1971 .

[101]  G. Sarty,et al.  Pre-fall Orbit of the Buzzard Coulee Meteoroid , 2010 .

[102]  E. Cloutis,et al.  COMPOSITIONAL HOMOGENEITY OF CM PARENT BODIES , 2016 .

[103]  P. Spurný,et al.  Cosmic‐ray exposure age and preatmospheric size of the Bunburra Rockhole achondrite , 2012 .

[104]  R. Michelsen,et al.  CM Chondrites from Comets? — New Constraints from the Orbit of the Maribo CM Chondrite Fall , 2011 .

[105]  J. A. Docobo,et al.  The Villalbeto de la Peña meteorite fall: II. Determination of atmospheric trajectory and orbit , 2006 .

[106]  G. Tancredi A criterion to classify asteroids and comets based on the orbital parameters , 2014 .

[107]  B. Gladman,et al.  Decoherence time scales for “meteoroid streams” , 2005 .