An alternative semiparametric model for spatial panel data

We propose a semiparametric P-Spline model to deal with spatial panel data. This model includes a non-parametric spatio-temporal trend, a spatial lag of the dependent variable, and a time series autoregressive noise. Specifically, we consider a spatio-temporal ANOVA model, disaggregating the trend into spatial and temporal main effects, as well as second- and third-order interactions between them. Algorithms based on spatial anisotropic penalties are used to estimate all the parameters in a closed form without the need for multidimensional optimization. Monte Carlo simulations and an empirical analysis of regional unemployment in Italy show that our model represents a valid alternative to parametric methods aimed at disentangling strong and weak cross-sectional dependence when both spatial and temporal heterogeneity are smoothly distributed.

[1]  Explaining the pattern of regional unemployment: The case of the Midi-Pyrénées region , 2003 .

[2]  Franziska Lottmann Spatial dependencies in German matching functions , 2012 .

[3]  Elisa Tosetti,et al.  Large Panels with Common Factors and Spatial Correlations , 2007, SSRN Electronic Journal.

[4]  M. Pesaran Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure , 2004, SSRN Electronic Journal.

[5]  Antonio Fatás,et al.  Regional labor market dynamics in Europe , 1995 .

[6]  Henry G. Overman,et al.  Unemployment clusters across Europe's regions and countries , 2002 .

[7]  Antonio Musolesi,et al.  Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion , 2017 .

[8]  Yves Zenou,et al.  Spatial Dependence in Local Unemployment Rates , 2007 .

[9]  Gerda Claeskens,et al.  Asymptotic properties of penalized spline estimators , 2009 .

[10]  C. D. Boor,et al.  Package for calculating B-splines , 1977 .

[11]  A. Thirlwall REGIONAL UNEMPLOYMENT AS A CYCLICAL PHENOMENON1 , 1966 .

[12]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[13]  G. Kapetanios,et al.  Panels with Nonstationary Multifactor Error Structures , 2006, SSRN Electronic Journal.

[14]  Paul H. C. Eilers,et al.  Twenty years of P-splines , 2015 .

[15]  Lung-fei Lee,et al.  Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients , 2016 .

[16]  M. Durbán,et al.  Generalized linear array models with applications to multidimensional smoothing , 2006 .

[17]  M. Pesaran,et al.  Weak and Strong Cross-Section Dependence and Estimation of Large Panels , 2009, SSRN Electronic Journal.

[18]  J. P. Elhorst,et al.  Spatial econometrics: from cross-sectional data to spatial panels , 2014 .

[19]  M. Hashem Pesaran,et al.  Testing Weak Cross-Sectional Dependence in Large Panels , 2012, SSRN Electronic Journal.

[20]  Román Mínguez,et al.  SAR models with nonparametric spatial trends . A P-spline approach , 2012 .

[21]  Kunpeng Li,et al.  Spatial Panel Data Models with Common Shocks , 2013 .

[22]  Lung-fei Lee,et al.  Estimation of spatial autoregressive panel data models with fixed effects , 2010 .

[23]  Liangjun Su,et al.  Sieve estimation of panel data models with cross section dependence , 2012 .

[24]  Jim Taylor,et al.  Unemployment in Europe: a comparative analysis of regional disparities in Germany, Italy and the UK , 1997 .

[25]  Paul H. C. Eilers,et al.  Fast and compact smoothing on large multidimensional grids , 2006, Comput. Stat. Data Anal..

[26]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[27]  Paul H. C. Eilers,et al.  Penalized regression with individual deviance effects , 2010, Comput. Stat..

[28]  Lung-fei Lee,et al.  A spatial panel data model with time varying endogenous weights matrices and common factors , 2017, Regional Science and Urban Economics.

[29]  Ian R. Gordon,et al.  Unemployment in the British Metropolitan Labour Areas , 1981 .

[30]  S. Wood ON CONFIDENCE INTERVALS FOR GENERALIZED ADDITIVE MODELS BASED ON PENALIZED REGRESSION SPLINES , 2006 .

[31]  Dae-Jin Lee,et al.  P-spline ANOVA-type interaction models for spatio-temporal smoothing , 2011 .

[32]  Paul H. C. Eilers,et al.  Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm , 2014, Statistics and Computing.

[33]  M. Durbán,et al.  Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities , 2014 .

[34]  Tadao Hoshino Semiparametric Spatial Autoregressive Models With Endogenous Regressors: With an Application to Crime Data , 2018 .

[35]  M. Pesaran A Simple Panel Unit Root Test in the Presence of Cross Section Dependence , 2003 .

[36]  J. Elhorst,et al.  Integrated Analysis of Regional and National Unemployment Differentials in the European Union , 2014 .

[37]  J. Elhorst,et al.  A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors , 2016 .

[38]  D. Hwang Smoothing mixed models for spatial and spatio-temporal data , 2011 .

[39]  X. Lin,et al.  Inference in generalized additive mixed modelsby using smoothing splines , 1999 .

[40]  M. Hashem Pesaran,et al.  A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence , 2016 .

[41]  M. Durbán,et al.  Flexible smoothing with P-splines: a unified approach , 2002 .

[42]  I. Molho,et al.  SPATIAL AUTOCORRELATION IN BRITISH UNEMPLOYMENT , 1995 .

[43]  P. Nijkamp,et al.  Geographical Distribution of Unemployment: An Analysis of Provincial Differences in Italy , 2007 .

[44]  Paul H. C. Eilers,et al.  Efficient two-dimensional smoothing with PP-spline ANOVA mixed models and nested bases , 2013, Comput. Stat. Data Anal..

[45]  M. Partridge,et al.  The Dispersion of US State Unemployment Rates: The Role of Market and Non-market Equilibrium Factors , 1997 .

[46]  A. Girardi,et al.  Migration and Regional Unemployment in Italy , 2012 .

[47]  J. LeSage Introduction to spatial econometrics , 2009 .

[48]  M. Pesaran,et al.  Common Correlated Effects Estimation of Heterogenous Dynamic Panel Data Models with Weakly Exogenous Regressors , 2013 .

[49]  Paul H. C. Eilers,et al.  Correcting for spatial heterogeneity in plant breeding experiments with P-splines , 2018 .

[50]  Stephen T. Marston Two Views of the Geographic Distribution of Unemployment , 1985 .