Application of the interface potential approach for studying wetting behavior within a molecular dynamics framework.

We introduce a means to implement the interface potential approach for computing wetting properties within a molecular dynamics framework. The general approach provides a means to determine the contact angle of a liquid droplet on a solid substrate in a mother vapor. We present a framework for implementing "spreading" and "drying" versions of the method within an isothermal-isobaric ensemble. Two free energy methods are considered: cumulative integration of average force profile and multistate Bennett acceptance ratio. An umbrella sampling strategy is used to restrain volume fluctuations and to ensure adequate sampling of a broad volume range. We explore implementation of the approach with the GROningen MAchine for Chemical Simulations and the Large-scale Atomic/Molecular Massively Parallel Simulator. We test the accuracy and efficiency of the method with models consisting of a monoatomic Lennard-Jones fluid in the vicinity of a structureless or atomistically detailed substrate. Our results show that one can successfully generate the drying potential within the framework pursued here. The efficiency of the method is strongly dependent upon how one handles the dynamics of the two confining walls. These decisions impact the rate of volume fluctuations, and therefore, the quality of the volume distributions collected. Our efforts to implement the spreading method with molecular dynamics alone proved unsuccessful. The rate at which the configuration space of the vapor phase evolves is insufficient. We show how one can overcome this challenge by implementing a coupled molecular dynamics/Monte Carlo approach. Finally, we show how one can determine the variation in interfacial properties with temperature and substrate strength.

[1]  Bo Shi,et al.  Molecular dynamics simulation of the contact angle of liquids on solid surfaces. , 2009, The Journal of chemical physics.

[2]  Mark N. Kobrak Systematic and statistical error in histogram‐based free energy calculations , 2003, J. Comput. Chem..

[3]  J. Finn,et al.  ADSORPTION EQUILIBRIA IN AN ISOBARIC ENSEMBLE , 1988 .

[4]  A. F. Bakker,et al.  A visual measurement of contact angles in a molecular-dynamics simulation , 1989 .

[5]  Johann Fischer,et al.  Molecular dynamics simulation of the liquid–vapor interface: The Lennard-Jones fluid , 1997 .

[6]  P. Gennes Wetting: statics and dynamics , 1985 .

[7]  Florian Müller-Plathe,et al.  Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. , 2010, The Journal of chemical physics.

[8]  Finite‐size effects on drying and wetting transitions in a molecular dynamics simulation , 1995 .

[9]  R. R. Picard,et al.  Monte Carlo Transition Dynamics and Variance Reduction , 2000 .

[10]  Mathias Lundgren,et al.  Modeling of wetting: a study of nanowetting at rough and heterogeneous surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[11]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[12]  Søren Toxvaerd,et al.  Contact Angles of Lennard-Jones Liquids and Droplets on Planar Surfaces , 2007 .

[13]  L. G. Macdowell,et al.  Interface and Surface Properties of Short Polymers in Solution: Monte Carlo Simulations and Self-Consistent Field Theory , 2000 .

[14]  D. Tildesley,et al.  Molecular dynamics simulation of the orthobaric densities and surface tension of water , 1995 .

[15]  J. Errington,et al.  Monte Carlo simulation methods for computing the wetting and drying properties of model systems. , 2011, The Journal of chemical physics.

[16]  J. Indekeu LINE TENSION AT WETTING , 1994 .

[17]  E. Sanz,et al.  Disjoining Pressure, Healing Distance and Film Height Dependent Surface Tension of Thin Wetting Films , 2014 .

[18]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[19]  J. Errington,et al.  Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces. , 2011, The Journal of chemical physics.

[20]  J. Errington,et al.  Influence of Substrate Strength on Wetting Behavior , 2008 .

[21]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[22]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[23]  Jonathan G. Harris,et al.  Fluid wetting on molecularly rough surfaces , 1995 .

[24]  J. Errington Prewetting transitions for a model argon on solid carbon dioxide system. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[25]  V. K. Shen,et al.  Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems. , 2006, The Journal of chemical physics.

[26]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[27]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[28]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[29]  R. R. Picard,et al.  Canonical transition probabilities for adaptive Metropolis simulation , 1999 .

[30]  Emilio Gallicchio,et al.  Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations. , 2012, Journal of chemical theory and computation.

[31]  R. Fair,et al.  Electrowetting-based actuation of liquid droplets for microfluidic applications , 2000 .

[32]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[33]  S. Garde,et al.  Structure, Stability, and Rupture of Free and Supported Liquid Films and Assemblies in Molecular Simulations , 2008 .

[34]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[35]  A. F. Bakker,et al.  Molecular dynamics of the wetting and drying of a wall with a long-ranged wall-fluid interaction , 1992 .

[36]  Kaski,et al.  Molecular dynamics of a microscopic droplet on solid surface. , 1992, Physical review letters.

[37]  J. Errington,et al.  Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation. , 2008, The Journal of chemical physics.

[38]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[39]  Marcus Müller,et al.  Observation of autophobic dewetting on polymer brushes from computer simulation , 2005 .

[40]  Finn,et al.  Prewetting at a fluid-solid interface via Monte Carlo simulation. , 1989, Physical review. A, General physics.

[41]  S. Maruyama T. Kurashige S. Matsumoto Y. Yamaguchi T. Kimura,et al.  LIQUID DROPLET IN CONTACT WITH A SOLID SURFACE , 1998 .

[42]  L. G. Macdowell Computer simulation of interface potentials: Towards a first principle description of complex interfaces? , 2011 .

[43]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[44]  G. Saville Computer simulation of the liquid–solid–vapour contact angle , 1977 .

[45]  David L. Mobley,et al.  Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations , 2010, J. Comput. Aided Mol. Des..

[46]  Bruin,et al.  Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[47]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[48]  J. Carlos Santamarina,et al.  Water‐CO2‐mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage , 2010 .

[49]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[50]  J. Errington,et al.  Using isothermal-isobaric Monte Carlo simulation to study the wetting behavior of model systems. , 2019, The Journal of chemical physics.

[51]  J. Errington,et al.  Calculation of interfacial properties via free-energy-based molecular simulation: The influence of system size. , 2010, The Journal of chemical physics.

[52]  K. Binder,et al.  How do droplets on a surface depend on the system size , 2002 .

[53]  L. G. Macdowell,et al.  Adsorption of polymers on a brush: Tuning the order of the wetting phase transition. , 2006, The Journal of chemical physics.

[54]  Petros Koumoutsakos,et al.  On the Water−Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes , 2003 .

[55]  D. Armstrong,et al.  A fundamental study on electrowetting by traditional and multifunctional ionic liquids: possible use in electrowetting on dielectric-based microfluidic applications. , 2008, Analytical chemistry.

[56]  Christophe Chipot,et al.  Exploring the free-energy landscape of a short peptide using an average force. , 2005, The Journal of chemical physics.

[57]  Chris Oostenbrink,et al.  Comparison of thermodynamic integration and Bennett acceptance ratio for calculating relative protein‐ligand binding free energies , 2013, J. Comput. Chem..