Acoustic Tomography of the Atmosphere Using Unscented Kalman Filter

Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a new statistical-based acoustic travel-time tomography algorithm based on unscented Kalman filter (UKF) which is capable of reconstructing and tracking temperature and wind velocity fields (state variables) within a specified investigation area. The method exploits an iterative ray-tracing algorithm to handle situations when straight-ray assumption no longer holds. The observations used in the UKF process consists of the acoustic travel times computed for every pair of transmitter/reciever nodes deployed in the investigation area. A first-order spatial-temporal autoregressive model is used to account for state evolution in the UKF. To evaluate the performance of the UKF-based acoustic tomography method, 2-D fractal Brownian motion is used to generate synthetic temperature and wind velocity fields with spatial and temporal resolution of 1 m and 12 s, respectively. The UKF-based acoustic tomography algorithm is then compared to the well-known time-dependent stochastic inversion method. The results reveal the effectiveness of the proposed method for accurate and fast reconstruction of temperature and wind velocity fields.

[1]  J. Mann Wind field simulation , 1998 .

[2]  Norishige Chiba,et al.  Wind Field Synthesis for Animating Wind-induced Vibration , 2011, Int. J. Virtual Real..

[3]  Manuela Barth,et al.  Acoustic tomographic imaging of temperature and flow fields in air , 2011 .

[4]  E. Loli Piccolomini,et al.  The conjugate gradient regularization method in Computed Tomography problems , 1999, Appl. Math. Comput..

[5]  V. C. Patel,et al.  Numerical simulation of wind flow over hilly terrain , 2000 .

[6]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[7]  S. Julier,et al.  A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .

[8]  Armin Raabe,et al.  Acoustic Travel Time Tomography – A Method for Remote Sensingof the Atmospheric Surface Layer , 1999 .

[9]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[10]  Michael Meadows,et al.  Community radio, radicalism and the grassroots: Discussing the politics of contemporary Australian community radio , 2002 .

[11]  D. Wilson,et al.  Quasi-Wavelet Model of Von Kármán Spectrum of Turbulent Velocity Fluctuations , 2004 .

[12]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[13]  M. Vetterli,et al.  Acoustic tomography for scalar and vector fields: theory and application to temperature and wind estimation , 2009 .

[14]  S. Vogt,et al.  SODAR — A useful remote sounder to measure wind and turbulence , 1995 .

[15]  W. Munk,et al.  Ocean Acoustic Tomograpthy: Notation , 1995 .

[16]  Armin Raabe,et al.  Acoustic tomography and conventional meteorological measurements over heterogeneous surfaces , 2004 .

[17]  Kalyanmoy Deb,et al.  Comparing GA with MART to tomographic reconstruction of ultrasound images with and without noisy input data , 2009, 2009 IEEE Congress on Evolutionary Computation.

[18]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[19]  Martin Vetterli,et al.  Efficient and Stable Acoustic Tomography Using Sparse Reconstruction Methods , 2007 .

[20]  Sergey N. Vecherin,et al.  Time-dependent stochastic inversion in acoustic travel-time tomography of the atmosphere , 2006 .

[21]  H. Musoff,et al.  Unscented Kalman Filter , 2015 .

[22]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[23]  Eugene Fiume,et al.  Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.

[24]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[25]  J. Spiesberger,et al.  Passive Localization of Calling Animals and Sensing of their Acoustic Environment Using Acoustic Tomography , 1990, The American Naturalist.

[26]  Gilles A. Daigle,et al.  Atmospheric Acoustic Remote Sensing , 2008 .

[27]  Alain Fournier,et al.  Stochastic Motion—Motion Under the Influence of Wind , 1992, Comput. Graph. Forum.

[28]  Dennis W. Thomson,et al.  Acoustic Tomographic Monitoring of the Atmospheric Surface Layer , 1994 .

[29]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[30]  G. J. Kunz,et al.  Vertical atmospheric profiles measured with lidar. , 1983, Applied optics.

[31]  M. Taroudakis Ocean Acoustic Tomography , 2006 .

[32]  Philippe Blanc-Benon,et al.  Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation. , 2002, The Journal of the Acoustical Society of America.

[33]  Siegfried Raasch,et al.  Comparison of Large-Eddy Simulation Data with Spatially Averaged Measurements Obtained by Acoustic Tomography – Presuppositions and First Results , 2004 .

[34]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[35]  Jianwei Wan,et al.  Iterated Unscented Kalman Filter for Passive Target Tracking , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[36]  Sergey N Vecherin,et al.  Tomographic reconstruction of atmospheric turbulence with the use of time-dependent stochastic inversion. , 2007, The Journal of the Acoustical Society of America.

[37]  Siegfried Raasch,et al.  STINHO - Structure of turbulent transport under inhomogeneous surface conditions. Part 1: The micro-α scale field experiment , 2005 .

[38]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[39]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[40]  Peter Gerstoft,et al.  Tracking of geoacoustic parameters using Kalman and particle filters. , 2009, The Journal of the Acoustical Society of America.

[41]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[42]  Sebastian Ehrlichmann Acoustics In Moving Inhomogeneous Media , 2016 .

[43]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[44]  Phillipp Meister,et al.  Statistical Signal Processing Detection Estimation And Time Series Analysis , 2016 .

[45]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[46]  P. Mason Atmospheric boundary layer flows: Their structure and measurement , 1995 .

[47]  E. Westwater,et al.  REMOTE SENSING OF BOUNDARY LAYER TEMPERATURE PROFILES BY A SCANNING 5-MM MICROWAVE RADIOMETER AND RASS : COMPARISON EXPERIMENTS , 1999 .

[48]  R. Shanmugam Introduction to Time Series and Forecasting , 1997 .

[49]  Carl Wunsch,et al.  Ocean acoustic tomography: a scheme for large scale monitoring , 1979 .