Constraining carbonation freezing and petrography of the carbonated cratonic mantle with natural samples

[1]  B. Kjarsgaard,et al.  Kimberlites from Source to Surface: Insights from Experiments , 2019 .

[2]  D. Pearson,et al.  The Metasomatized Mantle beneath the North Atlantic Craton: Insights from Peridotite Xenoliths of the Chidliak Kimberlite Province (NE Canada) , 2019, Journal of Petrology.

[3]  Yong‐Fei Zheng Subduction zone geochemistry , 2019, Geoscience Frontiers.

[4]  D. Sverjensky,et al.  Extended Deep Earth Water Model for predicting major element mantle metasomatism , 2019, Geochimica et Cosmochimica Acta.

[5]  A. Shatskiy,et al.  The System K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere , 2019, Minerals.

[6]  S. Foley,et al.  Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds , 2019, Science Advances.

[7]  R. Dasgupta,et al.  Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle , 2019, Earth and Planetary Science Letters.

[8]  W. Griffin,et al.  Spongy texture in mantle clinopyroxene recordsdecompression-induced melting , 2018, Lithos.

[9]  Yigang Xu,et al.  Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite , 2018 .

[10]  V. Kamenetsky,et al.  Monticellite in group-I kimberlites: Implications for evolution of parental melts and post-emplacement CO2 degassing , 2018 .

[11]  A. Abersteiner,et al.  Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: Relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts , 2017 .

[12]  A. Rohrbach,et al.  Experimental constraints on mantle metasomatism caused by silicate and carbonate melts , 2017 .

[13]  A. Steenfelt,et al.  Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation , 2017 .

[14]  B. Kjarsgaard,et al.  The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada , 2016, Contributions to Mineralogy and Petrology.

[15]  O. Navon,et al.  Most diamonds were created equal , 2016 .

[16]  A. Sokol,et al.  Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: Implications for metasomatism in lithospheric mantle , 2016 .

[17]  C. Class,et al.  Metasomatic enrichment of Proterozoic mantle south of the Kaapvaal Craton, South Africa: origin of sinusoidal REE patterns in clinopyroxene and garnet , 2016, Contributions to Mineralogy and Petrology.

[18]  J. Russell,et al.  The ascent of kimberlite: Insights from olivine , 2015 .

[19]  M. Miller,et al.  Lithospheric architecture beneath Hudson Bay , 2015 .

[20]  M. Schmidt Melting of pelitic sediments at subarc depths: 2. Melt chemistry, viscosities and a parameterization of melt composition , 2015 .

[21]  Q. Shu,et al.  Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism , 2015 .

[22]  J. Hermann,et al.  The Interplay between Melting, Refertilization and Carbonatite Metasomatism in Off-Cratonic Lithospheric Mantle under Zealandia: an Integrated Major, Trace and Platinum Group Element Study , 2015 .

[23]  J. Russell,et al.  Kimberlite emplacement temperatures from conodont geothermometry , 2015 .

[24]  J. Russell,et al.  Mineralogical controls on garnet composition in the cratonic mantle , 2015, Contributions to Mineralogy and Petrology.

[25]  Christine E. Miller,et al.  Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation , 2014, Mineralogy and Petrology.

[26]  I. Peytcheva,et al.  LA-ICP-MS Pb–U dating of young zircons from the Kos–Nisyros volcanic centre, SE Aegean arc , 2014 .

[27]  A. Giuliani,et al.  Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism , 2014 .

[28]  Hong‐fu Zhang,et al.  Widespread refertilization of cratonic and circum-cratonic lithospheric mantle , 2013 .

[29]  A. Gerdes,et al.  Trace element partitioning between mantle minerals and silico-carbonate melts at 6-12 GPa and applications to mantle metasomatism and kimberlite genesis , 2013 .

[30]  Adrian P. Jones,et al.  Carbonate Melts and Carbonatites , 2012 .

[31]  E. Dantas,et al.  Bebedourite from its type area (Salitre I complex): A key petrogenetic series in the Late-Cretaceous Alto Paranaíba kamafugite–carbonatite–phoscorite association, Central Brazil , 2012 .

[32]  W. Griffin,et al.  High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere , 2011 .

[33]  A. Rohrbach,et al.  Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling , 2011, Nature.

[34]  K. Qin,et al.  The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China , 2011 .

[35]  L. Dubrovinsky,et al.  Carbonatitic mineralogy of natural diamond-forming fluids , 2010 .

[36]  A. Rosenthal,et al.  The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar , 2009 .

[37]  D. Pearson,et al.  Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite , 2009 .

[38]  W. Griffin,et al.  The Composition and Evolution of Lithospheric Mantle: a Re-evaluation and its Tectonic Implications , 2009 .

[39]  Jung Hun Seo,et al.  Determination of sulfur in fluid inclusions by laser ablation ICP-MS , 2008 .

[40]  B. Kjarsgaard,et al.  PARAGENETIC TYPES OF CARBONATITE AS INDICATED BY THE DIVERSITY AND RELATIVE ABUNDANCES OF ASSOCIATED SILICATE ROCKS: EVIDENCE FROM A GLOBAL DATABASE , 2008 .

[41]  B. Kjarsgaard,et al.  Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes , 2008 .

[42]  K. Muehlenbachs,et al.  Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT , 2008 .

[43]  P. C. Hess,et al.  An experimental study of the grain-scale processes of peridotite melting: implications for major and trace element distribution during equilibrium and disequilibrium melting , 2008 .

[44]  Y. Lahaye,et al.  Experimental Melting of Carbonated Peridotite at 6-10 GPa , 2007 .

[45]  Derek M. Cunnold,et al.  Observations of 1,1‐difluoroethane (HFC‐152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates , 2007 .

[46]  S. Ono,et al.  Second critical endpoint in the peridotite‐H2O system , 2007 .

[47]  R. Carlson,et al.  The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle , 2007 .

[48]  M. Becker,et al.  Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution , 2006 .

[49]  L. Beccaluva,et al.  Kimberlite-like Metasomatism and 'Garnet Signature' in Spinel-peridotite Xenoliths from Sal, Cape Verde Archipelago: Relics of a Subcontinental Mantle Domain within the Atlantic Oceanic Lithosphere? , 2005 .

[50]  D. Demaiffe,et al.  Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review , 2005 .

[51]  T. Pettke,et al.  The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C , 2005 .

[52]  A. Sobolev,et al.  Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik , 2005 .

[53]  C. Hawkesworth,et al.  U series disequilibria: Insights into mantle melting and the timescales of magma differentiation , 2005 .

[54]  R. Carlson,et al.  Physical, chemical, and chronological characteristics of continental mantle , 2005 .

[55]  K. Viljoen,et al.  The trace element composition of silicate inclusions in diamonds: a review , 2004 .

[56]  B. Kjarsgaard,et al.  Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province , 2004 .

[57]  M. Kopylova,et al.  Mantle Xenoliths from the Southeastern Slave Craton: Evidence for Chemical Zonation in a Thick, Cold Lithosphere , 2004 .

[58]  R. Carlson,et al.  The origin of garnet and clinopyroxene in ''depleted'' Kaapvaal peridotites , 2003 .

[59]  G. Eby,et al.  Phlogopite-biotite parageneses from the K-mafic-carbonatite effusive magmatic association of Katwe-Kikorongo, SW Uganda , 2002 .

[60]  W. Griffin,et al.  Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes , 2001 .

[61]  P. Nimis,et al.  Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer , 2000 .

[62]  J. Russell,et al.  Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada , 2000 .

[63]  J. Russell,et al.  Primitive Magma From the Jericho Pipe, N.W.T., Canada: Constraints on Primary Kimberlite Melt Chemistry , 2000 .

[64]  R. Carlson,et al.  Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones , 2000 .

[65]  W. Griffin,et al.  Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa , 1999 .

[66]  D. Green,et al.  Carbonatite metasomatism in the southeastern Australian lithosphere , 1998 .

[67]  K. Viljoen,et al.  Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds , 1998 .

[68]  S. Mertzman,et al.  Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths , 1997 .

[69]  M. Kopylova,et al.  Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe , 1997 .

[70]  W. McDonough,et al.  Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics , 1993 .

[71]  A. Woolley,et al.  Carbonatites: nomenclature, average chemical compositions, and element distribution , 1989 .

[72]  D. Green,et al.  Mantle metasomatism by ephemeral carbonatite melts , 1988 .

[73]  R. Hazen,et al.  High-pressure crystal chemistry of monticellite, CaMgSiO 4 , 1987 .

[74]  E. Stolper,et al.  Geochemical Consequences of Melt Percolation: The Upper Mantle as a Chromatographic Column , 1987, The Journal of Geology.

[75]  L. Anovitz,et al.  The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2 , 1986 .

[76]  J. Kramers,et al.  Trace element and isotope studies on veined, metasomatic and “MARID” xenoliths from Bultfontein, South Africa. , 1983 .

[77]  B. Harte Rock Nomenclature with Particular Relation to Deformation and Recrystallisation Textures in Olivine-Bearing Xenoliths , 1977, The Journal of Geology.

[78]  J. Hermann,et al.  Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths , 2018 .

[79]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[80]  D. Pearson,et al.  3.6 – The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths , 2014 .

[81]  R. Dasgupta Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time , 2013 .

[82]  H. Keppler,et al.  Carbon in Silicate Melts , 2013 .

[83]  B. Harte,et al.  Petrography and geological history of upper mantle xenoliths from the matsoku kimberlite pipe , 1975 .