Super‐resolution reconstruction of diffusion parameters from diffusion‐weighted images with different slice orientations

Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal‐to‐noise ratio. Recently, methods have been proposed to improve the trade‐off between spatial resolution, signal‐to‐noise ratio, and acquisition time of diffusion‐weighted images via super‐resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q‐space relation between the different diffusion‐weighted images.

[1]  P. E. Morris,et al.  Water proton T1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[2]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[3]  R. Bammer Basic principles of diffusion-weighted imaging. , 2003, European journal of radiology.

[4]  Daniel C. Alexander,et al.  Axon radius measurements in vivo from diffusion MRI: a feasibility study , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Russell M. Mersereau,et al.  A Super-Resolution Framework for 3-D High-Resolution and High-Contrast Imaging Using 2-D Multislice MRI , 2009, IEEE Transactions on Medical Imaging.

[6]  Hayit Greenspan,et al.  Super-Resolution in Medical Imaging , 2009, Comput. J..

[7]  A Tobisch,et al.  Model-based super-resolution of diffusion MRI for microstructure imaging , 2013 .

[8]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[9]  J. Pipe Motion correction with PROPELLER MRI: Application to head motion and free‐breathing cardiac imaging , 1999, Magnetic resonance in medicine.

[10]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[11]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[12]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[13]  T. Nishimura,et al.  Diffusion Anisotropy Measurement of Brain White Matter Is Affected by Voxel Size: Underestimation Occurs in Areas with Crossing Fibers , 2007, American Journal of Neuroradiology.

[14]  Colin Studholme,et al.  Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. , 2006, Academic radiology.

[15]  Jan Sijbers,et al.  General and Efficient Super-Resolution Method for Multi-slice MRI , 2010, MICCAI.

[16]  Jerry L. Prince,et al.  Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T , 2007, NeuroImage.

[17]  Gary H. Glover,et al.  Foundations of advanced magnetic resonance imaging , 2005, NeuroRX.

[18]  J Sijbers,et al.  Data distributions in magnetic resonance images: a review. , 2014, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[19]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[20]  Fan Zhang,et al.  Effects of echo time on diffusion quantification of brain white matter at 1.5T and 3.0T , 2009, Magnetic resonance in medicine.

[21]  R. Deriche,et al.  Design of multishell sampling schemes with uniform coverage in diffusion MRI , 2013, Magnetic resonance in medicine.

[22]  J. Pekar,et al.  Echo-planar imaging of intravoxel incoherent motion. , 1990, Radiology.

[23]  Hayit Greenspan,et al.  MRI Inter-slice Reconstruction Using Super-Resolution , 2001, MICCAI.

[24]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[25]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[26]  Maxime Descoteaux,et al.  Collaborative patch-based super-resolution for diffusion-weighted images , 2013, NeuroImage.

[27]  Peter S. Jones,et al.  The neural substrates of impaired finger tapping regularity after stroke , 2010, NeuroImage.

[28]  Colin Studholme,et al.  A groupwise super-resolution approach: Application to brain MRI , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[29]  Simon K. Warfield,et al.  Robust Super-Resolution Volume Reconstruction From Slice Acquisitions: Application to Fetal Brain MRI , 2010, IEEE Transactions on Medical Imaging.

[30]  Alan Connelly,et al.  A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms , 2009, NeuroImage.

[31]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[32]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[33]  Jan Sijbers,et al.  1796 Super-resolution reconstruction of diffusion parameters from multi-oriented diffusion weighted images , 2013 .

[34]  Wiro J Niessen,et al.  Super‐resolution methods in MRI: Can they improve the trade‐off between resolution, signal‐to‐noise ratio, and acquisition time? , 2012, Magnetic resonance in medicine.

[35]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[36]  Klaus Scheffler Superresolution in MRI? , 2002, Magnetic resonance in medicine.

[37]  P. Basser Relationships between diffusion tensor and q‐space MRI † , 2002, Magnetic resonance in medicine.

[38]  Roland Bammer,et al.  EPI-Based Pulse Sequences for Diffusion Tensor MRI , 2010 .

[39]  Mary A. Rutherford,et al.  Reconstruction of fetal brain MRI with intensity matching and complete outlier removal , 2012, Medical Image Anal..

[40]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[41]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[42]  Nicholas Ayache,et al.  Fast and Simple Calculus on Tensors in the Log-Euclidean Framework , 2005, MICCAI.

[43]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[44]  Anders M. Dale,et al.  Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging , 2010, NeuroImage.

[45]  P Mansfield,et al.  Real-time echo-planar imaging by NMR. , 1984, British medical bulletin.

[46]  Colin Studholme,et al.  A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy , 2014, IEEE Transactions on Medical Imaging.

[47]  Jan Sijbers,et al.  Super‐resolution for multislice diffusion tensor imaging , 2013, Magnetic resonance in medicine.

[48]  Colin Studholme,et al.  Reconstruction of Scattered Data in Fetal Diffusion MRI , 2010, MICCAI.

[49]  Simon K. Warfield,et al.  Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions , 2012, Medical Image Anal..

[50]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[51]  Eric Van Reeth,et al.  Super-resolution in magnetic resonance imaging: A review , 2012 .

[52]  Stefan Ropele,et al.  Super‐resolution MRI using microscopic spatial modulation of magnetization , 2010, Magnetic resonance in medicine.

[53]  Peter F. Neher,et al.  Model-Based Super-Resolution of Diffusion MRI , 2013, CDMRI/MMBC@MICCAI.

[54]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .