Multiresolution Support Applied to Image Filtering and Restoration

The notion of a multiresolution support is introduced. This is a sequence of Boolean images related to significant pixels at each of a number of resolution levels. The multiresolution support is then used for noise suppression, in the context of image filtering, or iterative image restoration. Algorithmic details, and a range of practical examples, illustrate this approach.

[1]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[2]  Rafael Molina,et al.  On the Hierarchical Bayesian Approach to Image Restoration: Applications to Astronomical Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jean-Luc Starck,et al.  1 - Restauration des images multi-échelles par l'algorithme à trous , 1994 .

[4]  Rae-Hong Park,et al.  Multiresolution Adaptive Image Smoothing , 1994, CVGIP Graph. Model. Image Process..

[5]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[6]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[7]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Fionn Murtagh,et al.  Image restoration with noise suppression using a multiresolution support. , 1995 .

[9]  Jean-Christophe Feauveau Analyse multiresolution par ondelettes non orthogonales et bancs de filtres numeriques , 1990 .

[10]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[11]  Bernard W. Silverman,et al.  The discrete wavelet transform in S , 1994 .

[12]  C. Chui Wavelet Analysis and Its Applications , 1992 .

[13]  Aggelos K. Katsaggelos,et al.  Simultaneous iterative image restoration and evaluation of the regularization parameter , 1992, IEEE Trans. Signal Process..

[14]  Aggelos K. Katsaggelos,et al.  A regularized iterative image restoration algorithm , 1991, IEEE Trans. Signal Process..

[15]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .

[16]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[17]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[18]  Fionn Murtagh,et al.  Image restoration with noise suppression using the wavelet transform , 1994 .

[19]  L. Landweber An iteration formula for Fredholm integral equations of the first kind with application to the axially symmetric potential flow about elongated bodies of revolution , 1951 .

[20]  R. Hanisch,et al.  Restoration Newsletter of Stsci's Image Restoration Project Restoration of Simulated Planetary Nebula Observation Using the Project Overview / Pages 3-4 Project Overview Algorithms Psf Modeling Image Restoration and Photometry Simulated Data Contents , 2022 .

[21]  Reginald L. Lagendijk,et al.  Image Restoration with Ringing Reduction , 1991 .

[22]  Surendra Ranganath,et al.  Image Filtering Using Multiresolution Representations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[24]  Jean-Luc Starck,et al.  Filtering and deconvolution by the wavelet transform , 1994, Signal Process..

[25]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[26]  Yves Meyer,et al.  Ondelettes et algorithmes concurrents , 1992 .

[27]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..