Classification of Calendering‐Induced Electrode Defects and Their Influence on Subsequent Processes of Lithium‐Ion Battery Production

[1]  Sang Gun Lee,et al.  Effect of electrode compression on the wettability of lithium-ion batteries , 2014 .

[2]  Wolfgang Haselrieder,et al.  Current status and challenges for automotive battery production technologies , 2018 .

[3]  Margret Wohlfahrt-Mehrens,et al.  Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries , 2012 .

[4]  Gunther Reinhart,et al.  Complexity Management for the Start-up in Lithium-ion Cell Production , 2014 .

[5]  Gunther Reinhart,et al.  Quality Management for Battery Production: A Quality Gate Concept☆ , 2016 .

[6]  A. Schilling,et al.  Analyzing Bending Stresses on Lithium‐Ion Battery Cathodes induced by the Assembly Process , 2016 .

[7]  Gunther Reinhart,et al.  Data mining in lithium-ion battery cell production , 2019, Journal of Power Sources.

[8]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[9]  P. Scharfer,et al.  Slot die coating of lithium-ion battery electrodes: investigations on edge effect issues for stripe and pattern coatings , 2016, Journal of Coatings Technology and Research.

[10]  P. Scharfer,et al.  Delamination behavior of lithium-ion battery anodes: Influence of drying temperature during electrode processing , 2016 .

[11]  W. Bauer,et al.  Investigation of film solidification and binder migration during drying of Li-Ion battery anodes , 2016 .

[12]  H. Gasteiger,et al.  Detection of Binder Gradients Using Impedance Spectroscopy and Their Influence on the Tortuosity of Li-Ion Battery Graphite Electrodes , 2018 .

[13]  Wolfgang Haselrieder,et al.  Intensive Dry and Wet Mixing Influencing the Structural and Electrochemical Properties of Secondary Lithium-Ion Battery Cathodes , 2013 .

[14]  Hubert A. Gasteiger,et al.  The Manufacturing of Electrodes: Key Process for the Future Success of Lithium-Ion Batteries , 2016 .

[15]  P. Scharfer,et al.  Analytical determination of process windows for bilayer slot die coating , 2015, Journal of Coatings Technology and Research.

[16]  A. Jossen,et al.  Increasing the Discharge Rate Capability of Lithium-Ion Cells with Laser-Structured Graphite Anodes , 2018 .

[17]  Yangping Sheng,et al.  Effect of Calendering on Electrode Wettability in Lithium-Ion Batteries , 2014, Front. Energy Res..

[18]  Arno Kwade,et al.  The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties , 2016 .

[19]  Wolfgang Haselrieder,et al.  Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries , 2013 .

[20]  Wolfgang Haselrieder,et al.  Measuring the coating adhesion strength of electrodes for lithium-ion batteries , 2015 .

[21]  Wolfgang Haselrieder,et al.  Mercury intrusion for ion- and conversion-based battery electrodes – Structure and diffusion coefficient determination , 2017 .

[22]  Norbert Willenbacher,et al.  Prozess‐ und Produktentwicklung von Elektroden für Li‐Ionen‐Zellen , 2014 .

[23]  H. Tran,et al.  Influence of the technical process parameters on structural, mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes – A review , 2014 .

[24]  Jongsoo Lee,et al.  Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities , 2014 .

[25]  Wolfgang Haselrieder,et al.  Influence of Convective Drying Parameters on Electrode Performance and Physical Electrode Properties , 2015 .

[26]  A. Kwade,et al.  Structural and Electrochemical Properties of Calendered Lithium Manganese Oxide Cathodes , 2016 .

[27]  G. Richardson,et al.  Binder migration during drying of lithium-ion battery electrodes: Modelling and comparison to experiment , 2018, Journal of Power Sources.

[28]  Kevin G. Gallagher,et al.  Optimizing areal capacities through understanding the limitations of lithium-ion electrodes , 2016 .

[29]  Craig B. Arnold,et al.  The Effects of Defects on Localized Plating in Lithium-Ion Batteries , 2015 .

[30]  Wolfgang Haselrieder,et al.  Characterization of the calendering process for compaction of electrodes for lithium-ion batteries , 2017 .

[31]  Marcel Schmitt,et al.  Slot-die processing of lithium-ion battery electrodes—Coating window characterization , 2013 .

[32]  Craig B. Arnold,et al.  Stress evolution and capacity fade in constrained lithium-ion pouch cells , 2014 .

[33]  P. Scharfer,et al.  Development of a three-stage drying profile based on characteristic drying stages for lithium-ion battery anodes , 2017 .

[34]  P. Scharfer,et al.  Impact of drying conditions and wet film properties on adhesion and film solidification of lithium-ion battery anodes , 2017 .

[35]  Gunther Reinhart,et al.  Production of large-area lithium-ion cells – Preconditioning, cell stacking and quality assurance , 2012 .

[36]  I. Bloom,et al.  The effect of charging rate on the graphite electrode of commercial lithium-ion cells: A post-mortem study , 2016 .

[37]  Xiangyun Song,et al.  Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode , 2012 .

[38]  Gunther Reinhart,et al.  All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production , 2018 .