Quenched Local Convergence of Boltzmann Planar Maps

Stephenson~(2018) established annealed local convergence of Boltzmann planar maps conditioned to be large. The present work uses results on rerooted multi-type branching trees to prove a quenched version of this limit.

[1]  Sarah Eichmann,et al.  Mathematics And Computer Science Algorithms Trees Combinatorics And Probabilities , 2016 .

[2]  Gerry Leversha,et al.  Foundations of modern probability (2nd edn), by Olav Kallenberg. Pp. 638. £49 (hbk). 2002. ISBN 0 387 95313 2 (Springer-Verlag). , 2004, The Mathematical Gazette.

[3]  Laurent M'enard,et al.  Percolation on uniform infinite planar maps , 2013, 1302.2851.

[4]  Timothy Budd,et al.  The Peeling Process of Infinite Boltzmann Planar Maps , 2015, Electron. J. Comb..

[5]  Benedikt Stufler,et al.  Local Convergence of Random Planar Graphs , 2019, Trends in Mathematics.

[6]  Benedikt Stufler,et al.  Rerooting Multi-type Branching Trees: The Infinite Spine Case , 2019, Journal of Theoretical Probability.

[7]  Benedikt Stufler,et al.  Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.

[8]  Grégory Miermont,et al.  An invariance principle for random planar maps , 2006 .

[9]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[10]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[11]  Michael Drmota,et al.  Pattern occurrences in random planar maps , 2018 .

[12]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[13]  Jakob E. Bjornberg,et al.  Recurrence of bipartite planar maps , 2013, 1311.0178.

[14]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[15]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[16]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[17]  Maxim Krikun,et al.  Local structure of random quadrangulations , 2005, math/0512304.

[18]  Marc Noy,et al.  On the Diameter of Random Planar Graphs , 2012, Combinatorics, Probability and Computing.

[19]  Omer Angel,et al.  Uniform Infinite Planar Triangulations , 2002 .

[20]  Robin Stephenson,et al.  Local Convergence of Large Critical Multi-type Galton–Watson Trees and Applications to Random Maps , 2014, 1412.6911.

[21]  Nicolas Curien,et al.  A view from infinity of the uniform infinite planar quadrangulation , 2012, 1201.1052.

[22]  Sigurdur Orn Stef'ansson,et al.  Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.