Statistical analysis for vortex particle swarm optimization

Abstract This paper presents the statistical analysis of vortex particle swarm optimization (VPSO) which is a boost algorithm based on self-propelled particle swarms. In order to avoid local minima, the optimization algorithm uses two separated behaviors: translational and dispersion. This idea mimics living organism strategies such as foraging and predator avoidance. The dispersion is given by vortex behavior (circular movements) to scape from local minima. Via suitable parameter configuration is possible to switch between translational (convergence) and circular movements (dispersion). Performance of the algorithm is studied via statistical analysis results using well-known test functions.

[1]  Shuang Cong,et al.  A new adaptive inertia weight strategy in particle swarm optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[2]  Douglas C. Montgomery Diseño y análisis de experimentos , 1991 .

[3]  Antonio Jesús Arriaza Gómez,et al.  Estadística Básica con R y R-Commander , 2008 .

[4]  Helbert Eduardo Espitia Cuchango,et al.  Análisis de las condiciones iniciales para el algoritmo de optimización basado en enjambres partículas con comportamiento de vorticidad , 2014 .

[5]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[6]  Xin-She Yang,et al.  Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems , 2012 .

[7]  Helbert E. Espitia,et al.  Path planning of mobile robots using potential fields and swarms of Brownian particles , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[8]  J.G. Vlachogiannis,et al.  A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems , 2006, IEEE Transactions on Power Systems.

[9]  Helbert Eduardo Espitia Cuchango,et al.  Optimizacion basada en un modelo de particulas con comportamiento de vorticidad , 2013 .

[10]  Kalyanmoy Deb,et al.  Development of efficient particle swarm optimizers by using concepts from evolutionary algorithms , 2010, GECCO '10.

[11]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[12]  Xin-She Yang,et al.  Firefly Algorithm, Lévy Flights and Global Optimization , 2010, SGAI Conf..

[13]  Tim Hendtlass A particle swarm algorithm for high dimensional, multi-optima problem spaces , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[14]  Mauro Birattari,et al.  On the Invariance of Ant Colony Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[15]  David B. Fogel,et al.  Tuning Evolutionary Programming for Conformationally Flexible Molecular Docking , 1996, Evolutionary Programming.

[16]  Helbert Eduardo Espitia,et al.  Vortex Particle Swarm Optimization in 2D Cases , 2015, 2015 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE).

[17]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[19]  Ajith Abraham,et al.  Fuzzy adaptive turbulent particle swarm optimization , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[20]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[21]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[22]  Helbert Eduardo Espitia Cuchango,et al.  Analysis and simulation of vortex behavior for self-propelled particle model , 2016 .

[23]  Frank Moss,et al.  Pattern formation and stochastic motion of the zooplankton Daphnia in a light field , 2003 .

[24]  Lei Yin,et al.  A PSO Algorithm based on Biologe Population Multiplication (PMPSO) , 2010, ICCA 2010.

[25]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[26]  C. McInnes Vortex formation in swarms of interacting particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Enrique Alba,et al.  Restart particle swarm optimization with velocity modulation: a scalability test , 2011, Soft Comput..

[28]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[29]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[30]  Helbert Eduardo Espitia,et al.  Dispersion as stopping criterion for Vortex particle swarm optimization , 2013, 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA).

[31]  Kevin M. Passino,et al.  Biomimicry for Optimization, Control and Automation , 2004, IEEE Transactions on Automatic Control.

[32]  K. Hanagaki,et al.  V % Table of Contents , 1988 .

[33]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[34]  Helbert Eduardo Espitia Cuchango,et al.  Algoritmo de optimización basado en enjambres de partículas con comportamiento de vorticidad y búsqueda individual y grupal , 2014 .

[35]  Helbert Eduardo Espitia,et al.  Proposal for Parameter Selection of the Vortex Particle Swarm Optimization during the Dispersion Stage , 2013, 2013 International Conference on Mechatronics, Electronics and Automotive Engineering.

[36]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[37]  Toshiharu Hatanaka,et al.  Search Performance Improvement for PSO in High Dimensional Space , 2009 .

[38]  J R Saunders,et al.  A particle swarm optimizer with passive congregation. , 2004, Bio Systems.

[39]  Colin R. McInnes,et al.  Wall following to escape local minima for swarms of agents using internal states and emergent behaviour , 2008 .

[40]  R. Fetecau,et al.  Emergent behaviour in multi-particle systems with non-local interactions , 2013 .

[41]  A. Tamhane,et al.  Multiple Comparison Procedures , 1989 .

[42]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[43]  Helbert E. Espitia,et al.  Vortex Particle Swarm Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[44]  Rubén González Crespo,et al.  MOVPSO: Vortex Multi-Objective Particle Swarm Optimization , 2017, Appl. Soft Comput..

[45]  Thomas Stützle,et al.  A Comparison of Particle Swarm Optimization Algorithms Based on Run-Length Distributions , 2006, ANTS Workshop.

[46]  Butler Hine,et al.  BEES: exploring Mars with bioinspired technologies , 2004, Computer.

[47]  Werner Ebeling Nonequilibrium statistical mechanics of swarms of driven particles , 2002 .

[48]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[49]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[50]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[51]  Kevin D. Seppi,et al.  Exposing origin-seeking bias in PSO , 2005, GECCO '05.