Positive influence of Sb doping on properties of di-phase multiferroics based on barium titanate and nickel ferrite
暂无分享,去创建一个
J. Banys | J. Bobić | R. Grigalaitis | A. Dzunuzovic | B. Stojanović | R. Šalaševičius | M. V. Vijatović Petrović
[1] G. Rujijanagul,et al. High magnetic and ferroelectric properties of BZT-LSM multiferroic composites at room temperature , 2018 .
[2] K. Asokan,et al. Magneto-dielectric studies on multiferroic composites of Pr doped CoFe2O4 and Yb doped PbZrTiO3 , 2018 .
[3] M. Cao,et al. Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers , 2018, Journal of alloys and compounds.
[4] Md. D. Rahaman,et al. Synthesis and characterization of (100-x) Ba 0.82 Sr 0.03 Ca 0.15 Zr 0.10 Ti 0.90 O 3 + (x) Mg 0.25 Cu 0.25 Zn 0.5 Mn 0.05 Fe 1.95 O 4 composites with improved magnetoelectric voltage coefficient , 2018 .
[5] Y. Sharma,et al. Improvement in dielectric, ferroelectric and ferromagnetic characteristics of Ba0.9Sr0.1Zr0.1Ti0.9O3-NiFe2O4 composites , 2017 .
[6] K. SijoA.. Magnetic and structural properties of CoCrxFe2−xO4 spinels prepared by solution self combustion method , 2017 .
[7] O. P. Thakur,et al. Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions , 2017 .
[8] L. Mitoseriu,et al. Towards novel functional properties by interface reaction in mixtures of BaTiO3-Fe2O3 composite ceramics , 2017 .
[9] A. K. Tyagi,et al. Phase evolution in sonochemically synthesized Fe(3+) doped BaTiO3 nanocrystallites: structural, magnetic and ferroelectric characterisation. , 2016, Physical chemistry chemical physics : PCCP.
[10] S. A. Khader,et al. Dielectric, magnetic and ferroelectric studies in (x)Mn0.5Zn0.5Fe2O4 + (1-x)BaTiO3 magnetoelectric nano-composites , 2016 .
[11] L. Mitoseriu,et al. Microstructural influence on the broadband dielectric properties of BaTiO3-Ni0.5Zn0.5Fe2O4 core-shell composites: Experiment and modeling , 2015 .
[12] J. Banys,et al. Donor–acceptor joint effect in barium titanate systems , 2015 .
[13] K. Mažeika,et al. Broadband dielectric and Mössbauer studies of BaTiO3–NiFe2O4 composite multiferroics , 2015, Journal of Materials Science: Materials in Electronics.
[14] M. Nadeem,et al. Interplay between the ferromagnetic and ferroelectric phases on the magnetic and impedance analysis of (x)Pb(Zr0.52Ti0.48)O3–(1 − x)CoFe2O4 composites , 2015 .
[15] D. M. Potukuchi,et al. Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites , 2015 .
[16] Z. Dohcevic-Mitrovic,et al. Structure and properties of Ni–Zn ferrite obtained by auto-combustion method , 2015 .
[17] U. Joshi,et al. Microstructural and Electrical Properties of Barium Strontium Titanate and Nickel Zinc Ferrite Composites , 2015 .
[18] R. Tandon,et al. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite , 2014 .
[19] L. Mitoseriu,et al. Broadband dielectric spectroscopy of BaTiO3–Ni0.5Zn0.5Fe2O4 composite ceramics , 2014 .
[20] Jacob L. Jones,et al. BiFeO3 Ceramics: Processing, Electrical, and Electromechanical Properties , 2014 .
[21] J. Banys,et al. Dielectric and magnetic properties of BaTiO3 –NiFe2O4 multiferroic composites , 2014 .
[22] A. Habib,et al. Hydrothermal Synthesis, Structural and Electrical Properties of Antimony (Sb3+) Substituted Nickel Ferrites , 2014 .
[23] Jianguo Chen,et al. Impedance spectroscopy studies of 0.7Bi(Fe1−xGax)O3–0.3PbTiO3 high temperature piezoelectric ceramics , 2013 .
[24] V. Reddy,et al. Study of (1−x) BaTiO3–x Ni0.5Zn0.5Fe2O4 (x = 5, 10 and 15%) magneto-electric ceramic composites , 2013 .
[25] J. Banys,et al. Electrical properties of antimony doped barium titanate ceramics , 2013 .
[26] S. Srinath,et al. The effect of Sb on the electrical and magnetic properties of Ni-Zn ferrites prepared by sol–gel autocombustion method , 2013, Journal of Electroceramics.
[27] H. Uršič,et al. The electrical properties of chemically obtained barium titanate improved by attrition milling , 2013, Journal of Sol-Gel Science and Technology.
[28] D. J. Salunkhe,et al. Dielectric, magnetoelectric and magnetodielectric properties in CMFO-SBN composites , 2013 .
[29] S. R. Jigajeni,et al. Magnetoelectric and magnetodielectric effect in CFMO-PBT nanocomposites , 2013 .
[30] L. Mitoseriu,et al. Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites , 2013 .
[31] E. Pervaiz,et al. Magneto-Dielectric and Electromagnetic Absorbing studies of Antimony Doped Nickel Ferrites , 2013 .
[32] K. Yadav,et al. Study of structural, dielectric and magnetic behaviour of Ni0.75Zn0.25Fe2O4–Ba(Ti0.85Zr0.15)O3 composites , 2012 .
[33] Meng Wang,et al. Dielectric, ferromagnetic and ferroelectric properties of the (1 − x)Ba0.8Sr0.2TiO3–xCoFe2O4 multiferroic particulate ceramic composites , 2012, Journal of Materials Science: Materials in Electronics.
[34] C. Fu,et al. Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics , 2011 .
[35] J. Banys,et al. Electrical properties of lanthanum doped barium titanate ceramics , 2011 .
[36] J. Banys,et al. Antimony doping effect on barium titanate structure and electrical properties , 2011 .
[37] Sunil Kumar,et al. Dielectric relaxation in bismuth layer-structured BaBi4Ti4O15 ferroelectric ceramics , 2011 .
[38] J. Zhai,et al. Electric and magnetic properties of (x)CoFe2O4–(1−x)BaTiO3 thick film prepared by electrophoretic deposition technique , 2011 .
[39] J. Banys,et al. High Frequency Measurements of Ferroelecrics and Related Materials in Coaxial Line , 2011 .
[40] C. Prakash,et al. Synthesis and dielectric properties of substituted barium titanate ceramics , 2010 .
[41] J. Macutkevic,et al. Distribution of relaxation times of relaxors: comparison with dipolar glasses , 2009 .
[42] S. Gridnev,et al. MAGNETODIELECTRIC EFFECT IN TWO-LAYER MAGNETOELECTRIC PZT-MZF COMPOSITE , 2009 .
[43] Jung Hyun Jeong,et al. Magnetoelectric effect and complex impedance analysis of (x)CoFe2O4+(1―x)Ba0.8Sr0.2TiO3 multiferroics , 2009 .
[44] Dhak Prasanta,et al. Studies of structural and electrical properties of Ca1-xBi2+yNb2O9 [0.0 ≤ x ≤ 0.4; 0.000 < y ≤ 0.266] ferroelectric ceramics prepared by organic precursor decomposition method , 2008 .
[45] Y. Yoshida,et al. Evidence for polaron conduction in nanostructured manganese ferrite , 2008 .
[46] J. Azadmanjiri,et al. Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method , 2007 .
[47] S. B. Deshpande,et al. Ferroelectric and ferromagnetic properties of (x)BaTiO3 + (1 − x)Ni0.94Co0.01Cu0.05 Fe2O4 composite , 2007 .
[48] G. Catalán. Magnetodielectric effect without multiferroic coupling , 2005, cond-mat/0510313.
[49] Daniel E. Barber,et al. Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part I—improvement of insulation resistance with reoxidation , 2004 .
[50] M. Castro,et al. Influence of Nb5+ and Sb3+ dopants on the defect profile, PTCR effect and GBBL characteristics of BaTiO3 ceramics , 2004 .
[51] Derek C. Sinclair,et al. Characterization of Lanthanum-Doped Barium Titanate Ceramics Using Impedance Spectroscopy , 2001 .
[52] J. Grigas. Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials , 1996 .
[53] D. Sinclair,et al. Electroceramics: Characterization by Impedance Spectroscopy , 1990 .