Positive influence of Sb doping on properties of di-phase multiferroics based on barium titanate and nickel ferrite

[1]  G. Rujijanagul,et al.  High magnetic and ferroelectric properties of BZT-LSM multiferroic composites at room temperature , 2018 .

[2]  K. Asokan,et al.  Magneto-dielectric studies on multiferroic composites of Pr doped CoFe2O4 and Yb doped PbZrTiO3 , 2018 .

[3]  M. Cao,et al.  Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers , 2018, Journal of alloys and compounds.

[4]  Md. D. Rahaman,et al.  Synthesis and characterization of (100-x) Ba 0.82 Sr 0.03 Ca 0.15 Zr 0.10 Ti 0.90 O 3 + (x) Mg 0.25 Cu 0.25 Zn 0.5 Mn 0.05 Fe 1.95 O 4 composites with improved magnetoelectric voltage coefficient , 2018 .

[5]  Y. Sharma,et al.  Improvement in dielectric, ferroelectric and ferromagnetic characteristics of Ba0.9Sr0.1Zr0.1Ti0.9O3-NiFe2O4 composites , 2017 .

[6]  K. SijoA. Magnetic and structural properties of CoCrxFe2−xO4 spinels prepared by solution self combustion method , 2017 .

[7]  O. P. Thakur,et al.  Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions , 2017 .

[8]  L. Mitoseriu,et al.  Towards novel functional properties by interface reaction in mixtures of BaTiO3-Fe2O3 composite ceramics , 2017 .

[9]  A. K. Tyagi,et al.  Phase evolution in sonochemically synthesized Fe(3+) doped BaTiO3 nanocrystallites: structural, magnetic and ferroelectric characterisation. , 2016, Physical chemistry chemical physics : PCCP.

[10]  S. A. Khader,et al.  Dielectric, magnetic and ferroelectric studies in (x)Mn0.5Zn0.5Fe2O4 + (1-x)BaTiO3 magnetoelectric nano-composites , 2016 .

[11]  L. Mitoseriu,et al.  Microstructural influence on the broadband dielectric properties of BaTiO3-Ni0.5Zn0.5Fe2O4 core-shell composites: Experiment and modeling , 2015 .

[12]  J. Banys,et al.  Donor–acceptor joint effect in barium titanate systems , 2015 .

[13]  K. Mažeika,et al.  Broadband dielectric and Mössbauer studies of BaTiO3–NiFe2O4 composite multiferroics , 2015, Journal of Materials Science: Materials in Electronics.

[14]  M. Nadeem,et al.  Interplay between the ferromagnetic and ferroelectric phases on the magnetic and impedance analysis of (x)Pb(Zr0.52Ti0.48)O3–(1 − x)CoFe2O4 composites , 2015 .

[15]  D. M. Potukuchi,et al.  Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites , 2015 .

[16]  Z. Dohcevic-Mitrovic,et al.  Structure and properties of Ni–Zn ferrite obtained by auto-combustion method , 2015 .

[17]  U. Joshi,et al.  Microstructural and Electrical Properties of Barium Strontium Titanate and Nickel Zinc Ferrite Composites , 2015 .

[18]  R. Tandon,et al.  Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite , 2014 .

[19]  L. Mitoseriu,et al.  Broadband dielectric spectroscopy of BaTiO3–Ni0.5Zn0.5Fe2O4 composite ceramics , 2014 .

[20]  Jacob L. Jones,et al.  BiFeO3 Ceramics: Processing, Electrical, and Electromechanical Properties , 2014 .

[21]  J. Banys,et al.  Dielectric and magnetic properties of BaTiO3 –NiFe2O4 multiferroic composites , 2014 .

[22]  A. Habib,et al.  Hydrothermal Synthesis, Structural and Electrical Properties of Antimony (Sb3+) Substituted Nickel Ferrites , 2014 .

[23]  Jianguo Chen,et al.  Impedance spectroscopy studies of 0.7Bi(Fe1−xGax)O3–0.3PbTiO3 high temperature piezoelectric ceramics , 2013 .

[24]  V. Reddy,et al.  Study of (1−x) BaTiO3–x Ni0.5Zn0.5Fe2O4 (x = 5, 10 and 15%) magneto-electric ceramic composites , 2013 .

[25]  J. Banys,et al.  Electrical properties of antimony doped barium titanate ceramics , 2013 .

[26]  S. Srinath,et al.  The effect of Sb on the electrical and magnetic properties of Ni-Zn ferrites prepared by sol–gel autocombustion method , 2013, Journal of Electroceramics.

[27]  H. Uršič,et al.  The electrical properties of chemically obtained barium titanate improved by attrition milling , 2013, Journal of Sol-Gel Science and Technology.

[28]  D. J. Salunkhe,et al.  Dielectric, magnetoelectric and magnetodielectric properties in CMFO-SBN composites , 2013 .

[29]  S. R. Jigajeni,et al.  Magnetoelectric and magnetodielectric effect in CFMO-PBT nanocomposites , 2013 .

[30]  L. Mitoseriu,et al.  Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites , 2013 .

[31]  E. Pervaiz,et al.  Magneto-Dielectric and Electromagnetic Absorbing studies of Antimony Doped Nickel Ferrites , 2013 .

[32]  K. Yadav,et al.  Study of structural, dielectric and magnetic behaviour of Ni0.75Zn0.25Fe2O4–Ba(Ti0.85Zr0.15)O3 composites , 2012 .

[33]  Meng Wang,et al.  Dielectric, ferromagnetic and ferroelectric properties of the (1 − x)Ba0.8Sr0.2TiO3–xCoFe2O4 multiferroic particulate ceramic composites , 2012, Journal of Materials Science: Materials in Electronics.

[34]  C. Fu,et al.  Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics , 2011 .

[35]  J. Banys,et al.  Electrical properties of lanthanum doped barium titanate ceramics , 2011 .

[36]  J. Banys,et al.  Antimony doping effect on barium titanate structure and electrical properties , 2011 .

[37]  Sunil Kumar,et al.  Dielectric relaxation in bismuth layer-structured BaBi4Ti4O15 ferroelectric ceramics , 2011 .

[38]  J. Zhai,et al.  Electric and magnetic properties of (x)CoFe2O4–(1−x)BaTiO3 thick film prepared by electrophoretic deposition technique , 2011 .

[39]  J. Banys,et al.  High Frequency Measurements of Ferroelecrics and Related Materials in Coaxial Line , 2011 .

[40]  C. Prakash,et al.  Synthesis and dielectric properties of substituted barium titanate ceramics , 2010 .

[41]  J. Macutkevic,et al.  Distribution of relaxation times of relaxors: comparison with dipolar glasses , 2009 .

[42]  S. Gridnev,et al.  MAGNETODIELECTRIC EFFECT IN TWO-LAYER MAGNETOELECTRIC PZT-MZF COMPOSITE , 2009 .

[43]  Jung Hyun Jeong,et al.  Magnetoelectric effect and complex impedance analysis of (x)CoFe2O4+(1―x)Ba0.8Sr0.2TiO3 multiferroics , 2009 .

[44]  Dhak Prasanta,et al.  Studies of structural and electrical properties of Ca1-xBi2+yNb2O9 [0.0 ≤ x ≤ 0.4; 0.000 < y ≤ 0.266] ferroelectric ceramics prepared by organic precursor decomposition method , 2008 .

[45]  Y. Yoshida,et al.  Evidence for polaron conduction in nanostructured manganese ferrite , 2008 .

[46]  J. Azadmanjiri,et al.  Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method , 2007 .

[47]  S. B. Deshpande,et al.  Ferroelectric and ferromagnetic properties of (x)BaTiO3 + (1 − x)Ni0.94Co0.01Cu0.05 Fe2O4 composite , 2007 .

[48]  G. Catalán Magnetodielectric effect without multiferroic coupling , 2005, cond-mat/0510313.

[49]  Daniel E. Barber,et al.  Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part I—improvement of insulation resistance with reoxidation , 2004 .

[50]  M. Castro,et al.  Influence of Nb5+ and Sb3+ dopants on the defect profile, PTCR effect and GBBL characteristics of BaTiO3 ceramics , 2004 .

[51]  Derek C. Sinclair,et al.  Characterization of Lanthanum-Doped Barium Titanate Ceramics Using Impedance Spectroscopy , 2001 .

[52]  J. Grigas Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials , 1996 .

[53]  D. Sinclair,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .