Topological Invariants for Projection Method Patterns
暂无分享,去创建一个
[1] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[2] J. Kellendonk. Topological equivalence of tilings , 1996, cond-mat/9609254.
[3] Johannes Kellendonk,et al. Cohomology of Canonical Projection Tilings , 2002 .
[4] Jeffrey C. Lagarias,et al. Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..
[5] P. Kramer,et al. On Periodic and Non-periodic Space Fillings of E , 1984 .
[6] At Hof,et al. On diffraction by aperiodic structures , 1995 .
[7] E. Arthur Robinson,et al. Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .
[8] A. Janner,et al. The nature of the atomic surfaces of quasiperiodic self-similar structures , 1993 .
[9] J. Socolar,et al. Simple octagonal and dodecagonal quasicrystals. , 1989, Physical review. B, Condensed matter.
[10] Anton Bovier,et al. GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHRÖDINGER OPERATORS , 1992 .
[11] Michael Baake,et al. Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability , 1991 .
[12] A. Katz,et al. Quasiperiodic Patterns with Icosahedral Symmetry , 1986 .
[13] Selim Tuncel,et al. Classification Problems in Ergodic Theory , 1982 .
[14] J. Bellissard. Gap labeling theorems for Schrodinger operators , 1990 .
[15] Katherine D. Blake. To San Francisco , 1911 .
[16] E. Robinson,et al. The dynamical properties of Penrose tilings , 1996 .
[17] James W. Vick,et al. Singular Homology Theory , 1994 .
[18] A. Paterson,et al. Groupoids, Inverse Semigroups, and their Operator Algebras , 1998 .
[19] P J Steinhardt,et al. The physics of quasicrystals , 1987 .
[20] J. Bellissard. K-theory of C*—Algebras in solid state physics , 1986 .
[21] J. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .
[22] E. Zobetz. A pentagonal quasiperiodic tiling with fractal acceptance domain , 1992 .
[23] A. Forrest,et al. The cohomology and $K$-theory of commuting homeomorphisms of the Cantor set , 1999, Ergodic Theory and Dynamical Systems.
[24] T. Giordano,et al. Topological orbit equivalence and C*-crossed products. , 1995 .
[25] Johannes Kellendonk,et al. Tilings, C∗-algebras and K-theory , 2000 .
[26] J. Renault. A Groupoid Approach to C*-Algebras , 1980 .
[27] Alan L. Mackay,et al. Crystallography and the penrose pattern , 1982 .
[28] de Ng Dick Bruijn,et al. Quasicrystals and their Fourier transform , 1986 .
[30] C. Thomas. Characteristic Classes and the Cohomology of Finite Groups , 1987 .
[31] P. Kramer,et al. On periodic and non-periodic space fillings of E m obtained by projection , 1984 .
[32] A. Forrest. A BRATTELI DIAGRAM FOR COMMUTING HOMEOMORPHISMS OF THE CANTOR SET , 2000 .
[33] Thang T. Q. Lê. Local Rules for Quasiperiodic Tilings , 1997 .
[34] Robert V. Moody,et al. The Mathematics of Long-Range Aperiodic Order , 1997 .
[35] Jeffrey C. Lagarias,et al. Meyer's concept of quasicrystal and quasiregular sets , 1996 .
[36] de Ng Dick Bruijn,et al. Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .
[37] P. Paufler,et al. Quasicrystals and Geometry , 1997 .
[38] Jean Bellissard,et al. K-théorie des quasi-cristaux, image par la trace : le cas du réseau octogonal , 1998 .
[39] Leonard Evens,et al. Cohomology of groups , 1991, Oxford mathematical monographs.
[40] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[41] C. Oguey,et al. A geometrical approach of quasiperiodic tilings , 1988 .
[42] Kenneth S. Brown,et al. Cohomology of Groups , 1982 .
[43] F. Gähler,et al. Cohomology groups for projection tilings of codimension 2 , 2000 .
[44] I. Putnam,et al. Topological invariants for substitution tilings and their associated $C^\ast$-algebras , 1998, Ergodic Theory and Dynamical Systems.
[45] B. Solomyak,et al. Spectrum of dynamical systems arising from Delone sets , 1998 .
[46] D. L. Herrmann. Quasicrystals and Denjoy homeomorphisms , 2000 .
[47] Michael Baake,et al. Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dedecagonal symmetry , 1992 .
[48] Charles Radin,et al. Space tilings and local isomorphism , 1992 .
[49] The Penrose, Ammann and DA tiling spaces are Cantor set fiber bundles , 2001, Ergodic Theory and Dynamical Systems.
[50] Marjorie Senechal,et al. Quasicrystals: the view from les houches , 1990 .
[51] H. Furstenberg,et al. The Structure of Distal Flows , 1963 .
[52] Root lattices and quasicrystals , 1990, cond-mat/0006062.
[53] NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELLING , 1994, cond-mat/9403065.
[54] Johannes Kellendonk. The Local Structure of Tilings and Their Integer Group of Coinvariants , 1997 .
[55] A. Mishchenko. C*-Algebras and K-theory , 1979 .