Topological Invariants for Projection Method Patterns

General introduction Topological spaces and dynamical systems Groupoids, $C^\ast$-algebras, and their invariants Approaches to Calculation I: Cohomology for codimension one Approaches to Calculation II: Infinitely generated cohomology Approaches to Calculation III: Cohomology for small codimension Bibliography.

[1]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[2]  J. Kellendonk Topological equivalence of tilings , 1996, cond-mat/9609254.

[3]  Johannes Kellendonk,et al.  Cohomology of Canonical Projection Tilings , 2002 .

[4]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..

[5]  P. Kramer,et al.  On Periodic and Non-periodic Space Fillings of E , 1984 .

[6]  At Hof,et al.  On diffraction by aperiodic structures , 1995 .

[7]  E. Arthur Robinson,et al.  Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .

[8]  A. Janner,et al.  The nature of the atomic surfaces of quasiperiodic self-similar structures , 1993 .

[9]  J. Socolar,et al.  Simple octagonal and dodecagonal quasicrystals. , 1989, Physical review. B, Condensed matter.

[10]  Anton Bovier,et al.  GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHRÖDINGER OPERATORS , 1992 .

[11]  Michael Baake,et al.  Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability , 1991 .

[12]  A. Katz,et al.  Quasiperiodic Patterns with Icosahedral Symmetry , 1986 .

[13]  Selim Tuncel,et al.  Classification Problems in Ergodic Theory , 1982 .

[14]  J. Bellissard Gap labeling theorems for Schrodinger operators , 1990 .

[15]  Katherine D. Blake To San Francisco , 1911 .

[16]  E. Robinson,et al.  The dynamical properties of Penrose tilings , 1996 .

[17]  James W. Vick,et al.  Singular Homology Theory , 1994 .

[18]  A. Paterson,et al.  Groupoids, Inverse Semigroups, and their Operator Algebras , 1998 .

[19]  P J Steinhardt,et al.  The physics of quasicrystals , 1987 .

[20]  J. Bellissard K-theory of C*—Algebras in solid state physics , 1986 .

[21]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[22]  E. Zobetz A pentagonal quasiperiodic tiling with fractal acceptance domain , 1992 .

[23]  A. Forrest,et al.  The cohomology and $K$-theory of commuting homeomorphisms of the Cantor set , 1999, Ergodic Theory and Dynamical Systems.

[24]  T. Giordano,et al.  Topological orbit equivalence and C*-crossed products. , 1995 .

[25]  Johannes Kellendonk,et al.  Tilings, C∗-algebras and K-theory , 2000 .

[26]  J. Renault A Groupoid Approach to C*-Algebras , 1980 .

[27]  Alan L. Mackay,et al.  Crystallography and the penrose pattern , 1982 .

[28]  de Ng Dick Bruijn,et al.  Quasicrystals and their Fourier transform , 1986 .

[30]  C. Thomas Characteristic Classes and the Cohomology of Finite Groups , 1987 .

[31]  P. Kramer,et al.  On periodic and non-periodic space fillings of E m obtained by projection , 1984 .

[32]  A. Forrest A BRATTELI DIAGRAM FOR COMMUTING HOMEOMORPHISMS OF THE CANTOR SET , 2000 .

[33]  Thang T. Q. Lê Local Rules for Quasiperiodic Tilings , 1997 .

[34]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[35]  Jeffrey C. Lagarias,et al.  Meyer's concept of quasicrystal and quasiregular sets , 1996 .

[36]  de Ng Dick Bruijn,et al.  Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .

[37]  P. Paufler,et al.  Quasicrystals and Geometry , 1997 .

[38]  Jean Bellissard,et al.  K-théorie des quasi-cristaux, image par la trace : le cas du réseau octogonal , 1998 .

[39]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[40]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[41]  C. Oguey,et al.  A geometrical approach of quasiperiodic tilings , 1988 .

[42]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[43]  F. Gähler,et al.  Cohomology groups for projection tilings of codimension 2 , 2000 .

[44]  I. Putnam,et al.  Topological invariants for substitution tilings and their associated $C^\ast$-algebras , 1998, Ergodic Theory and Dynamical Systems.

[45]  B. Solomyak,et al.  Spectrum of dynamical systems arising from Delone sets , 1998 .

[46]  D. L. Herrmann Quasicrystals and Denjoy homeomorphisms , 2000 .

[47]  Michael Baake,et al.  Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dedecagonal symmetry , 1992 .

[48]  Charles Radin,et al.  Space tilings and local isomorphism , 1992 .

[49]  The Penrose, Ammann and DA tiling spaces are Cantor set fiber bundles , 2001, Ergodic Theory and Dynamical Systems.

[50]  Marjorie Senechal,et al.  Quasicrystals: the view from les houches , 1990 .

[51]  H. Furstenberg,et al.  The Structure of Distal Flows , 1963 .

[52]  Root lattices and quasicrystals , 1990, cond-mat/0006062.

[53]  NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELLING , 1994, cond-mat/9403065.

[54]  Johannes Kellendonk The Local Structure of Tilings and Their Integer Group of Coinvariants , 1997 .

[55]  A. Mishchenko C*-Algebras and K-theory , 1979 .