High-dimensional integration: The quasi-Monte Carlo way*†
暂无分享,去创建一个
Frances Y. Kuo | Josef Dick | Ian H. Sloan | I. Sloan | J. Dick | F. Kuo
[1] Jiří Matoušek,et al. The Exponent of Discrepancy Is at Least 1.0669 , 1998, J. Complex..
[2] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[3] Frances Y. Kuo,et al. Constructing lattice rules based on weighted degree of exactness and worst case error , 2010, Computing.
[4] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[5] Peter Kritzer,et al. Component-by-component construction of low-discrepancy point sets of small size , 2008, Monte Carlo Methods Appl..
[6] H. E. Chrestenson. A class of generalized Walsh functions , 1955 .
[7] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2011 .
[8] Josef Dick,et al. The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..
[9] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[10] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[11] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[12] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[13] Josef Dick,et al. Cyclic Digital Nets, Hyperplane Nets, and Multivariate Integration in Sobolev Spaces , 2006, SIAM J. Numer. Anal..
[14] Henryk Wozniakowski,et al. Liberating the dimension , 2010, J. Complex..
[15] Henryk Wozniakowski,et al. Periodization strategy may fail in high dimensions , 2007, Numerical Algorithms.
[16] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[17] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[18] Josef Dick,et al. Construction algorithms for higher order polynomial lattice rules , 2011, J. Complex..
[19] Aicke Hinrichs,et al. Covering numbers, Vapnik-ervonenkis classes and bounds for the star-discrepancy , 2004, J. Complex..
[20] Markus Hofer,et al. Probabilistic error bounds for the discrepancy of mixed sequences , 2012, Monte Carlo Methods Appl..
[21] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[22] Xiaoqun Wang. A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..
[23] Henryk Wozniakowski,et al. On the exponent of discrepancies , 2009, Math. Comput..
[24] Tor Sørevik,et al. Five-dimensional K-optimal lattice rules , 2006, Math. Comput..
[25] G. Wahba. Spline models for observational data , 1990 .
[26] Josef Dick,et al. Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..
[27] Harald Niederreiter,et al. A construction of (t,s)-sequences with finite-row generating matrices using global function fields , 2012 .
[28] P. Glasserman,et al. A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .
[29] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[30] S. Joe. Component by Component Construction of Rank-1 Lattice Rules HavingO(n-1(In(n))d) Star Discrepancy , 2004 .
[31] Stephen Joe,et al. Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy , 2008 .
[32] C. Rader. Discrete Fourier transforms when the number of data samples is prime , 1968 .
[33] Shu Tezuka,et al. On the discrepancy of generalized Niederreiter sequences , 2013, J. Complex..
[34] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[35] N. Fine. On the Walsh functions , 1949 .
[36] Harald Niederreiter,et al. Further discrepancy bounds and an Erdös–Turán–Koksma inequality for hybrid sequences , 2010 .
[37] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[38] Herschel Rabitz,et al. Multicut‐HDMR with an application to an ionospheric model , 2004, J. Comput. Chem..
[39] H. Wozniakowski,et al. On tractability of path integration , 1996 .
[40] Harald Niederreiter,et al. On the discrepancy of some hybrid sequences , 2009 .
[41] S. Joe. Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .
[42] Mutsuo Saito,et al. A computable figure of merit for quasi-Monte Carlo point sets , 2011, Math. Comput..
[43] Andrew S. Glassner,et al. MONTE CARLO INTEGRATION , 1995 .
[44] I.H. Sloan. Finite-order Integration Weights Can be Dangerous , 2007 .
[45] Michael Gnewuch,et al. Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.
[46] R. Womersley,et al. Quasi-Monte Carlo for Highly Structured Generalised Response Models , 2008 .
[47] Frances Y. Kuo,et al. Reducing the construction cost of the component-by-component construction of good lattice rules , 2004, Math. Comput..
[48] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[49] P. L’Ecuyer,et al. On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .
[50] Harald Niederreiter,et al. Construction Algorithms for Good Extensible Lattice Rules , 2009 .
[51] Anand Srivastav,et al. Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems , 2009, J. Complex..
[52] I. Sloan,et al. Brownian bridge and principal component analysis: towards removing the curse of dimensionality , 2007 .
[53] Ian H. Sloan,et al. Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..
[54] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[55] R. Adler,et al. The Geometry of Random Fields , 1982 .
[56] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[57] Michael Gnewuch,et al. Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..
[58] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[59] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[60] Fred J. Hickernell,et al. Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions , 2001, J. Complex..
[61] Ian H. Sloan,et al. Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction , 2011, Oper. Res..
[62] Wei-Liem Loh. On the asymptotic distribution of scrambled net quadrature , 2003 .
[63] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[64] Peter Kritzer,et al. On the existence of higher order polynomial lattices based on a generalized figure of merit , 2007, J. Complex..
[65] Friedrich Pillichshammer. Bounds for the Quality Parameter of Digital Shift Nets over Z2 , 2002 .
[66] Gerhard Larcher,et al. Metrical results on the discrepancy of Halton–Kronecker sequences , 2012 .
[67] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[68] Harald Niederreiter,et al. Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .
[69] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[70] P. L’Ecuyer,et al. On the distribution of integration error by randomly-shifted lattice rules , 2010 .
[71] Lutz Kämmerer,et al. Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..
[72] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[73] Wolfgang Ch. Schmid,et al. Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .
[74] Gottlieb Pirsic,et al. A Software Implementation of Niederreiter-Xing Sequences , 2002 .
[75] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.
[76] Pierre L'Ecuyer,et al. Quasi-Monte Carlo methods in finance , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..
[77] Gerhard Larcher,et al. Quasi-Monte Carlo methods for the numerical integration of multivariate walsh series , 1996 .
[78] Fred J. Hickernell,et al. The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..
[79] Christine Thomas-Agnan,et al. Computing a family of reproducing kernels for statistical applications , 1996, Numerical Algorithms.
[80] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[81] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2014, Numerische Mathematik.
[82] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[83] Bennett L. Fox,et al. Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.
[84] Josef Dick,et al. Random weights, robust lattice rules and the geometry of the cbcrc algorithm , 2011, Numerische Mathematik.
[85] USA. Quasi-Monte Carlo for Integrands with Point Singularities at Unknown Locations , .
[86] Michael Gnewuch. On probabilistic results for the discrepancy of a hybrid-Monte Carlo sequence , 2009, J. Complex..
[87] Gerhard Larcher,et al. On existence and discrepancy of certain digital Niederreiter-Halton sequences , 2010 .
[88] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[89] Peter Kritzer,et al. ON HYBRID SEQUENCES BUILT FROM NIEDERREITER–HALTON SEQUENCES AND KRONECKER SEQUENCES , 2011, Bulletin of the Australian Mathematical Society.
[90] Arthur G. Werschulz,et al. Tractability of Multivariate Approximation over a Weighted Unanchored Sobolev Space , 2009 .
[91] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[92] Dirk P. Laurie,et al. Periodizing transformations for numerical integration , 1996 .
[93] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[94] Frances Y. Kuo,et al. Constructing Good Lattice Rules with Millions of Points , 2004 .
[95] Fred J. Hickernell,et al. Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..
[96] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[97] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[98] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[99] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[100] Jan Baldeaux,et al. Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.
[101] Josef Dick,et al. On Quasi-Monte Carlo Rules Achieving Higher Order Convergence , 2009 .
[102] Peter Kritzer,et al. Distribution Properties of Generalized van der Corput-Halton Sequences and their Subsequences , 2009 .
[103] F. J. Hickernell,et al. Trigonometric spectral collocation methods on lattices , 2003 .
[104] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[105] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[106] F. J. Hickernell. Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .
[107] Fred J. Hickernell,et al. Monte Carlo Simulation of Stochastic Integrals when the Cost of Function Evaluation Is Dimension Dependent , 2009 .
[108] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[109] F. J. Hickernell,et al. Tractability of Multivariate Integration for Periodic Functions , 2001, J. Complex..
[110] E. Novak,et al. L 2 discrepancy and multivariate integration , 2009 .
[111] Bernard Chazelle,et al. The discrepancy method - randomness and complexity , 2000 .
[112] H. Wozniakowski,et al. Lattice Algorithms for Multivariate L∞ Approximation in the Worst-Case Setting , 2009 .
[113] Harald Niederreiter,et al. A DISCREPANCY BOUND FOR HYBRID SEQUENCES INVOLVING DIGITAL EXPLICIT INVERSIVE PSEUDORANDOM NUMBERS , 2010 .
[114] Aicke Hinrichs,et al. Tractability properties of the weighted star discrepancy , 2008, J. Complex..
[115] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[116] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[117] Frances Y. Kuo,et al. Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..
[118] Pierre L'Ecuyer,et al. Existence and construction of shifted lattice rules with an arbitrary number of points and bounded weighted star discrepancy for general decreasing weights , 2011, J. Complex..
[119] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[120] E. Novak,et al. Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .
[121] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[122] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[123] A. H. Stroud,et al. Methods of Numerical Integration—Second Edition (Philip J. Davis and Philip Rabinowitz) , 1986 .
[124] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[125] Emanouil I. Atanassov. Efficient CPU-Specific Algorithm for Generating the Generalized Faure Sequences , 2003, LSSC.
[126] Michael Gnewuch,et al. ON G-DISCREPANCY AND MIXED MONTE CARLO AND QUASI-MONTE CARLO SEQUENCES , 2009 .
[127] R. Cools,et al. A Belgian view on lattice rules , 2008 .
[128] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[129] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[130] Stefan Heinrich,et al. Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..
[131] Michael Gnewuch,et al. Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces , 2012, J. Complex..
[132] Christoph Aistleitner,et al. Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..
[133] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[134] Fred J. Hickernell,et al. Strong Tractability of Quasi-Monte Carlo Quadrature Using Nets for Certain Banach Spaces , 2006, SIAM J. Numer. Anal..
[135] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[136] Benjamin J. Waterhouse,et al. Quasi-Monte Carlo for finance applications , 2008 .
[137] Kai Lai Chung,et al. A Course in Probability Theory , 1949 .
[138] P. L’Ecuyer,et al. On selection criteria for lattice rules and other quasi-Monte Carlo point sets , 2001 .
[139] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[140] Heath-Brown,et al. Analytic Number Theory: Essays in Honour of Klaus Roth , 2007 .
[141] Josef Dick,et al. Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..
[142] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[143] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[144] Wolfgang Hackbusch,et al. Parallel algorithms for partial differential equations - Proceedings of the sixth GAMM-seminar - Kiel, January 19-21, 1990 , 1991 .
[145] Grzegorz W. Wasilkowski,et al. Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..
[146] Harald Niederreiter,et al. Improved discrepancy bounds for hybrid sequences involving Halton sequences , 2012 .
[147] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[148] Kai-Tai Fang,et al. The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..
[149] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[150] J. Dick. Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands , 2010, 1007.0842.
[151] I. Sloan,et al. QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.
[152] Harald Niederreiter,et al. The Existence of Good Extensible Polynomial Lattice Rules , 2003 .
[153] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[154] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[155] Giray Ökten,et al. A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications , 1996, Monte Carlo Methods Appl..
[156] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[157] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[158] Alexander Keller,et al. Myths of Computer Graphics , 2006 .
[159] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[160] Henryk Wozniakowski,et al. On decompositions of multivariate functions , 2009, Math. Comput..
[161] J. Dick. THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.
[162] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[163] Frances Y. Kuo,et al. Lifting the Curse of Dimensionality , 2005 .
[164] Dirk Nuyens,et al. Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .
[165] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[166] Wolfgang Ch. Schmid,et al. Calculation of the Quality Parameter of Digital Nets and Application to Their Construction , 2001, J. Complex..
[167] Wolfgang Hörmann,et al. Automatic Nonuniform Random Variate Generation , 2011 .
[168] Ronald Cools,et al. Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.
[169] Ian H. Sloan,et al. Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..
[170] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[171] Josef Dick,et al. A construction of polynomial lattice rules with small gain coefficients , 2011, Numerische Mathematik.
[172] Peter Kritzer,et al. Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.
[173] Stefan Heinrich,et al. Monte Carlo Complexity of Parametric Integration , 1999, J. Complex..
[174] Christian P. Robert,et al. Monte Carlo Integration , 2010 .
[175] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[176] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[177] Gerhard Larcher,et al. On the numerical integration of Walsh series by number-theoretic methods , 1994 .
[178] Bernard Chazelle,et al. The Discrepancy Method , 1998, ISAAC.
[179] Fred J. Hickernell,et al. Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .
[180] Magnus Wahlström,et al. Algorithmic construction of low-discrepancy point sets via dependent randomized rounding , 2010, J. Complex..
[181] Josef Dick,et al. Quasi-Monte Carlo Numerical Integration on Rs: Digital Nets and Worst-Case Error , 2011, SIAM J. Numer. Anal..
[182] Henryk Wozniakowski,et al. Lattice rule algorithms for multivariate approximation in the average case setting , 2008, J. Complex..
[183] Stephen Joe,et al. Good lattice rules based on the general weighted star discrepancy , 2007, Math. Comput..
[184] Magnus Wahlström,et al. A New Randomized Algorithm to Approximate the Star Discrepancy Based on Threshold Accepting , 2012, SIAM J. Numer. Anal..
[185] Ji R Matou. The exponent of discrepancy , 1998 .
[186] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[187] A. Owen,et al. Control variates for quasi-Monte Carlo , 2005 .
[188] H. Niederreiter,et al. Good parameters for a class of node sets in quasi-Monte Carlo integration , 1993 .
[189] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[190] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[191] Michael Gnewuch. Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..
[192] Alexander Keller,et al. Quasi-Monte Carlo Image Synthesis in a Nutshell , 2013 .
[193] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[194] Grzegorz W. Wasilkowski,et al. Randomly shifted lattice rules for unbounded integrands , 2006, J. Complex..
[195] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[196] Fred J. Hickernell,et al. Goodness-of-fit statistics, discrepancies and robust designs , 1999 .
[197] Steffen Dereich,et al. Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..
[198] Fred J. Hickernell,et al. Weighted compound integration rules with higher order convergence for all N , 2012, Numerical Algorithms.
[199] Arpit A. Almal,et al. Lifting the Curse of Dimensionality , 2007 .
[200] Grzegorz W. Wasilkowski,et al. Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..
[201] Harald Niederreiter,et al. Digital Nets and Coding Theory , 2004 .
[202] Shu Tezuka,et al. I-binomial scrambling of digital nets and sequences , 2003, J. Complex..
[203] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[204] Josef Dick,et al. Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..
[205] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[206] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[207] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[208] Henryk Wozniakowski,et al. Exponential convergence and tractability of multivariate integration for Korobov spaces , 2011, Math. Comput..
[209] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[210] Friedrich Pillichshammer,et al. Extensible hyperplane nets , 2011, Finite Fields Their Appl..
[211] Fred J. Hickernell,et al. Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..
[212] Henryk Wozniakowski,et al. Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..
[213] Takehito Yoshiki,et al. Existence of Higher Order Convergent Quasi-Monte Carlo Rules via Walsh Figure of Merit , 2013 .
[214] Peter W. Glynn,et al. A new approach to unbiased estimation for SDE's , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).
[215] Josef Dick,et al. Equidistribution Properties of Generalized Nets and Sequences , 2009 .
[216] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[217] Ben Niu,et al. Deterministic Multi-level Algorithms for Infinite-dimensional Integration on {$\mathbb{R}^{\mathbb{N}}$} , 2010 .
[218] H. Woxniakowski. Information-Based Complexity , 1988 .
[219] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.
[220] Dirk Nuyens,et al. Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.
[221] Michael Gnewuch,et al. On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..
[222] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[223] F. J. Hickernell. Quadrature Error Bounds with Applications to Lattice Rules , 1997 .
[224] Henryk Wozniakowski,et al. Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..
[225] Frances Y. Kuo,et al. The smoothing effect of integration in Rd and the ANOVA decomposition , 2013, Math. Comput..
[226] Peter Kritzer,et al. Constructions of general polynomial lattice rules based on the weighted star discrepancy , 2007, Finite Fields Their Appl..
[227] H. Wozniakowski,et al. A new algorithm and worst case complexity for Feynman-Kac path integration , 2000 .
[228] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[229] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[230] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[231] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[232] Dirk Nuyens,et al. Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.
[233] Josef Dick,et al. Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..
[234] Friedrich Pillichshammer,et al. Discrepancy of Hyperplane Nets and Cyclic Nets , 2009 .
[235] Dirk Nuyens,et al. A Component-by-Component Construction for the Trigonometric Degree , 2012 .
[236] R. Adler. The Geometry of Random Fields , 2009 .
[237] Henryk Wozniakowski,et al. Finite-order weights imply tractability of linear multivariate problems , 2004, J. Approx. Theory.
[238] Wolfgang Ch. Schmid,et al. Representation of functions as Walsh series to different bases and an application to the numerical integration of high-dimensional Walsh series , 1994 .
[239] Harald Niederreiter,et al. Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series , 1996 .
[240] Ronald Cools,et al. Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree , 2001, Math. Comput..
[241] J. Matousek,et al. Geometric Discrepancy: An Illustrated Guide , 2009 .
[242] M. Griebel. Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .
[243] Roswitha Hofer,et al. AN EXPLICIT CONSTRUCTION OF FINITE-ROW DIGITAL (0, s)-SEQUENCES , 2011 .
[244] Bruno Tuffin,et al. A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance , 2006, J. Complex..
[245] Michael Gnewuch,et al. Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..
[246] Henryk Wozniakowski,et al. Intractability Results for Integration and Discrepancy , 2001, J. Complex..
[247] Frances Y. Kuo,et al. Component-By-Component Construction of Good Intermediate-Rank Lattice Rules , 2003, SIAM J. Numer. Anal..
[248] Magnus Wahlström,et al. Implementation of a Component-By-Component Algorithm to Generate Small Low-Discrepancy Samples , 2009 .
[249] Henryk Wozniakowski,et al. Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..
[250] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[251] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[252] I. Sloan,et al. Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .
[253] Josef Dick,et al. QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .
[254] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[255] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[256] Wolfgang Ch. Schmid,et al. Improvements and Extensions of the “Salzburg Tables” by Using Irreducible Polynomials , 2000 .
[257] Peter Kritzer,et al. Duality theory and propagation rules for generalized digital nets , 2010, Math. Comput..
[258] Avram Sidi,et al. A New Variable Transformation for Numerical Integration , 1993 .
[259] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[260] Arnold J. Stromberg,et al. Number-theoretic Methods in Statistics , 1996 .