High-dimensional integration: The quasi-Monte Carlo way*†

This paper is a contemporary review of QMC (‘quasi-Monte Carlo’) methods, that is, equal-weight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0,1]s, where s may be large, or even infinite. After a general introduction, the paper surveys recent developments in lattice methods, digital nets, and related themes. Among those recent developments are methods of construction of both lattices and digital nets, to yield QMC rules that have a prescribed rate of convergence for sufficiently smooth functions, and ideally also guaranteed slow growth (or no growth) of the worst-case error as s increases. A crucial role is played by parameters called ‘weights’, since a careful use of the weight parameters is needed to ensure that the worst-case errors in an appropriately weighted function space are bounded, or grow only slowly, as the dimension s increases. Important tools for the analysis are weighted function spaces, reproducing kernel Hilbert spaces, and discrepancy, all of which are discussed with an appropriate level of detail.

[1]  Jiří Matoušek,et al.  The Exponent of Discrepancy Is at Least 1.0669 , 1998, J. Complex..

[2]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[3]  Frances Y. Kuo,et al.  Constructing lattice rules based on weighted degree of exactness and worst case error , 2010, Computing.

[4]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[5]  Peter Kritzer,et al.  Component-by-component construction of low-discrepancy point sets of small size , 2008, Monte Carlo Methods Appl..

[6]  H. E. Chrestenson A class of generalized Walsh functions , 1955 .

[7]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2011 .

[8]  Josef Dick,et al.  The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..

[9]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[10]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[11]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[12]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[13]  Josef Dick,et al.  Cyclic Digital Nets, Hyperplane Nets, and Multivariate Integration in Sobolev Spaces , 2006, SIAM J. Numer. Anal..

[14]  Henryk Wozniakowski,et al.  Liberating the dimension , 2010, J. Complex..

[15]  Henryk Wozniakowski,et al.  Periodization strategy may fail in high dimensions , 2007, Numerical Algorithms.

[16]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[17]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[18]  Josef Dick,et al.  Construction algorithms for higher order polynomial lattice rules , 2011, J. Complex..

[19]  Aicke Hinrichs,et al.  Covering numbers, Vapnik-ervonenkis classes and bounds for the star-discrepancy , 2004, J. Complex..

[20]  Markus Hofer,et al.  Probabilistic error bounds for the discrepancy of mixed sequences , 2012, Monte Carlo Methods Appl..

[21]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[22]  Xiaoqun Wang A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..

[23]  Henryk Wozniakowski,et al.  On the exponent of discrepancies , 2009, Math. Comput..

[24]  Tor Sørevik,et al.  Five-dimensional K-optimal lattice rules , 2006, Math. Comput..

[25]  G. Wahba Spline models for observational data , 1990 .

[26]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[27]  Harald Niederreiter,et al.  A construction of (t,s)-sequences with finite-row generating matrices using global function fields , 2012 .

[28]  P. Glasserman,et al.  A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .

[29]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[30]  S. Joe Component by Component Construction of Rank-1 Lattice Rules HavingO(n-1(In(n))d) Star Discrepancy , 2004 .

[31]  Stephen Joe,et al.  Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy , 2008 .

[32]  C. Rader Discrete Fourier transforms when the number of data samples is prime , 1968 .

[33]  Shu Tezuka,et al.  On the discrepancy of generalized Niederreiter sequences , 2013, J. Complex..

[34]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[35]  N. Fine On the Walsh functions , 1949 .

[36]  Harald Niederreiter,et al.  Further discrepancy bounds and an Erdös–Turán–Koksma inequality for hybrid sequences , 2010 .

[37]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[38]  Herschel Rabitz,et al.  Multicut‐HDMR with an application to an ionospheric model , 2004, J. Comput. Chem..

[39]  H. Wozniakowski,et al.  On tractability of path integration , 1996 .

[40]  Harald Niederreiter,et al.  On the discrepancy of some hybrid sequences , 2009 .

[41]  S. Joe Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .

[42]  Mutsuo Saito,et al.  A computable figure of merit for quasi-Monte Carlo point sets , 2011, Math. Comput..

[43]  Andrew S. Glassner,et al.  MONTE CARLO INTEGRATION , 1995 .

[44]  I.H. Sloan Finite-order Integration Weights Can be Dangerous , 2007 .

[45]  Michael Gnewuch,et al.  Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.

[46]  R. Womersley,et al.  Quasi-Monte Carlo for Highly Structured Generalised Response Models , 2008 .

[47]  Frances Y. Kuo,et al.  Reducing the construction cost of the component-by-component construction of good lattice rules , 2004, Math. Comput..

[48]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[49]  P. L’Ecuyer,et al.  On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .

[50]  Harald Niederreiter,et al.  Construction Algorithms for Good Extensible Lattice Rules , 2009 .

[51]  Anand Srivastav,et al.  Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems , 2009, J. Complex..

[52]  I. Sloan,et al.  Brownian bridge and principal component analysis: towards removing the curse of dimensionality , 2007 .

[53]  Ian H. Sloan,et al.  Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..

[54]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[55]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[56]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[57]  Michael Gnewuch,et al.  Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..

[58]  Harald Niederreiter,et al.  Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .

[59]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[60]  Fred J. Hickernell,et al.  Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions , 2001, J. Complex..

[61]  Ian H. Sloan,et al.  Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction , 2011, Oper. Res..

[62]  Wei-Liem Loh On the asymptotic distribution of scrambled net quadrature , 2003 .

[63]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[64]  Peter Kritzer,et al.  On the existence of higher order polynomial lattices based on a generalized figure of merit , 2007, J. Complex..

[65]  Friedrich Pillichshammer Bounds for the Quality Parameter of Digital Shift Nets over Z2 , 2002 .

[66]  Gerhard Larcher,et al.  Metrical results on the discrepancy of Halton–Kronecker sequences , 2012 .

[67]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[68]  Harald Niederreiter,et al.  Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .

[69]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[70]  P. L’Ecuyer,et al.  On the distribution of integration error by randomly-shifted lattice rules , 2010 .

[71]  Lutz Kämmerer,et al.  Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..

[72]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[73]  Wolfgang Ch. Schmid,et al.  Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .

[74]  Gottlieb Pirsic,et al.  A Software Implementation of Niederreiter-Xing Sequences , 2002 .

[75]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[76]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods in finance , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[77]  Gerhard Larcher,et al.  Quasi-Monte Carlo methods for the numerical integration of multivariate walsh series , 1996 .

[78]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[79]  Christine Thomas-Agnan,et al.  Computing a family of reproducing kernels for statistical applications , 1996, Numerical Algorithms.

[80]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[81]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2014, Numerische Mathematik.

[82]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[83]  Bennett L. Fox,et al.  Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.

[84]  Josef Dick,et al.  Random weights, robust lattice rules and the geometry of the cbcrc algorithm , 2011, Numerische Mathematik.

[85]  USA Quasi-Monte Carlo for Integrands with Point Singularities at Unknown Locations , .

[86]  Michael Gnewuch On probabilistic results for the discrepancy of a hybrid-Monte Carlo sequence , 2009, J. Complex..

[87]  Gerhard Larcher,et al.  On existence and discrepancy of certain digital Niederreiter-Halton sequences , 2010 .

[88]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[89]  Peter Kritzer,et al.  ON HYBRID SEQUENCES BUILT FROM NIEDERREITER–HALTON SEQUENCES AND KRONECKER SEQUENCES , 2011, Bulletin of the Australian Mathematical Society.

[90]  Arthur G. Werschulz,et al.  Tractability of Multivariate Approximation over a Weighted Unanchored Sobolev Space , 2009 .

[91]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[92]  Dirk P. Laurie,et al.  Periodizing transformations for numerical integration , 1996 .

[93]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[94]  Frances Y. Kuo,et al.  Constructing Good Lattice Rules with Millions of Points , 2004 .

[95]  Fred J. Hickernell,et al.  Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..

[96]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[97]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[98]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[99]  Fred J. Hickernell,et al.  Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..

[100]  Jan Baldeaux,et al.  Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.

[101]  Josef Dick,et al.  On Quasi-Monte Carlo Rules Achieving Higher Order Convergence , 2009 .

[102]  Peter Kritzer,et al.  Distribution Properties of Generalized van der Corput-Halton Sequences and their Subsequences , 2009 .

[103]  F. J. Hickernell,et al.  Trigonometric spectral collocation methods on lattices , 2003 .

[104]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[105]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[106]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[107]  Fred J. Hickernell,et al.  Monte Carlo Simulation of Stochastic Integrals when the Cost of Function Evaluation Is Dimension Dependent , 2009 .

[108]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[109]  F. J. Hickernell,et al.  Tractability of Multivariate Integration for Periodic Functions , 2001, J. Complex..

[110]  E. Novak,et al.  L 2 discrepancy and multivariate integration , 2009 .

[111]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[112]  H. Wozniakowski,et al.  Lattice Algorithms for Multivariate L∞ Approximation in the Worst-Case Setting , 2009 .

[113]  Harald Niederreiter,et al.  A DISCREPANCY BOUND FOR HYBRID SEQUENCES INVOLVING DIGITAL EXPLICIT INVERSIVE PSEUDORANDOM NUMBERS , 2010 .

[114]  Aicke Hinrichs,et al.  Tractability properties of the weighted star discrepancy , 2008, J. Complex..

[115]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[116]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[117]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..

[118]  Pierre L'Ecuyer,et al.  Existence and construction of shifted lattice rules with an arbitrary number of points and bounded weighted star discrepancy for general decreasing weights , 2011, J. Complex..

[119]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[120]  E. Novak,et al.  Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .

[121]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[122]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[123]  A. H. Stroud,et al.  Methods of Numerical Integration—Second Edition (Philip J. Davis and Philip Rabinowitz) , 1986 .

[124]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[125]  Emanouil I. Atanassov Efficient CPU-Specific Algorithm for Generating the Generalized Faure Sequences , 2003, LSSC.

[126]  Michael Gnewuch,et al.  ON G-DISCREPANCY AND MIXED MONTE CARLO AND QUASI-MONTE CARLO SEQUENCES , 2009 .

[127]  R. Cools,et al.  A Belgian view on lattice rules , 2008 .

[128]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[129]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[130]  Stefan Heinrich,et al.  Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..

[131]  Michael Gnewuch,et al.  Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces , 2012, J. Complex..

[132]  Christoph Aistleitner,et al.  Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..

[133]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[134]  Fred J. Hickernell,et al.  Strong Tractability of Quasi-Monte Carlo Quadrature Using Nets for Certain Banach Spaces , 2006, SIAM J. Numer. Anal..

[135]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[136]  Benjamin J. Waterhouse,et al.  Quasi-Monte Carlo for finance applications , 2008 .

[137]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[138]  P. L’Ecuyer,et al.  On selection criteria for lattice rules and other quasi-Monte Carlo point sets , 2001 .

[139]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[140]  Heath-Brown,et al.  Analytic Number Theory: Essays in Honour of Klaus Roth , 2007 .

[141]  Josef Dick,et al.  Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..

[142]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[143]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[144]  Wolfgang Hackbusch,et al.  Parallel algorithms for partial differential equations - Proceedings of the sixth GAMM-seminar - Kiel, January 19-21, 1990 , 1991 .

[145]  Grzegorz W. Wasilkowski,et al.  Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..

[146]  Harald Niederreiter,et al.  Improved discrepancy bounds for hybrid sequences involving Halton sequences , 2012 .

[147]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[148]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[149]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[150]  J. Dick Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands , 2010, 1007.0842.

[151]  I. Sloan,et al.  QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.

[152]  Harald Niederreiter,et al.  The Existence of Good Extensible Polynomial Lattice Rules , 2003 .

[153]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[154]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[155]  Giray Ökten,et al.  A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications , 1996, Monte Carlo Methods Appl..

[156]  J. M. Sek,et al.  On the L2-discrepancy for anchored boxes , 1998 .

[157]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[158]  Alexander Keller,et al.  Myths of Computer Graphics , 2006 .

[159]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[160]  Henryk Wozniakowski,et al.  On decompositions of multivariate functions , 2009, Math. Comput..

[161]  J. Dick THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.

[162]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[163]  Frances Y. Kuo,et al.  Lifting the Curse of Dimensionality , 2005 .

[164]  Dirk Nuyens,et al.  Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .

[165]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[166]  Wolfgang Ch. Schmid,et al.  Calculation of the Quality Parameter of Digital Nets and Application to Their Construction , 2001, J. Complex..

[167]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[168]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[169]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[170]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[171]  Josef Dick,et al.  A construction of polynomial lattice rules with small gain coefficients , 2011, Numerische Mathematik.

[172]  Peter Kritzer,et al.  Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.

[173]  Stefan Heinrich,et al.  Monte Carlo Complexity of Parametric Integration , 1999, J. Complex..

[174]  Christian P. Robert,et al.  Monte Carlo Integration , 2010 .

[175]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[176]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[177]  Gerhard Larcher,et al.  On the numerical integration of Walsh series by number-theoretic methods , 1994 .

[178]  Bernard Chazelle,et al.  The Discrepancy Method , 1998, ISAAC.

[179]  Fred J. Hickernell,et al.  Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .

[180]  Magnus Wahlström,et al.  Algorithmic construction of low-discrepancy point sets via dependent randomized rounding , 2010, J. Complex..

[181]  Josef Dick,et al.  Quasi-Monte Carlo Numerical Integration on Rs: Digital Nets and Worst-Case Error , 2011, SIAM J. Numer. Anal..

[182]  Henryk Wozniakowski,et al.  Lattice rule algorithms for multivariate approximation in the average case setting , 2008, J. Complex..

[183]  Stephen Joe,et al.  Good lattice rules based on the general weighted star discrepancy , 2007, Math. Comput..

[184]  Magnus Wahlström,et al.  A New Randomized Algorithm to Approximate the Star Discrepancy Based on Threshold Accepting , 2012, SIAM J. Numer. Anal..

[185]  Ji R Matou The exponent of discrepancy , 1998 .

[186]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[187]  A. Owen,et al.  Control variates for quasi-Monte Carlo , 2005 .

[188]  H. Niederreiter,et al.  Good parameters for a class of node sets in quasi-Monte Carlo integration , 1993 .

[189]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[190]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[191]  Michael Gnewuch Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..

[192]  Alexander Keller,et al.  Quasi-Monte Carlo Image Synthesis in a Nutshell , 2013 .

[193]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[194]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules for unbounded integrands , 2006, J. Complex..

[195]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[196]  Fred J. Hickernell,et al.  Goodness-of-fit statistics, discrepancies and robust designs , 1999 .

[197]  Steffen Dereich,et al.  Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..

[198]  Fred J. Hickernell,et al.  Weighted compound integration rules with higher order convergence for all N , 2012, Numerical Algorithms.

[199]  Arpit A. Almal,et al.  Lifting the Curse of Dimensionality , 2007 .

[200]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..

[201]  Harald Niederreiter,et al.  Digital Nets and Coding Theory , 2004 .

[202]  Shu Tezuka,et al.  I-binomial scrambling of digital nets and sequences , 2003, J. Complex..

[203]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[204]  Josef Dick,et al.  Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..

[205]  Frances Y. Kuo,et al.  Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..

[206]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[207]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[208]  Henryk Wozniakowski,et al.  Exponential convergence and tractability of multivariate integration for Korobov spaces , 2011, Math. Comput..

[209]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[210]  Friedrich Pillichshammer,et al.  Extensible hyperplane nets , 2011, Finite Fields Their Appl..

[211]  Fred J. Hickernell,et al.  Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..

[212]  Henryk Wozniakowski,et al.  Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..

[213]  Takehito Yoshiki,et al.  Existence of Higher Order Convergent Quasi-Monte Carlo Rules via Walsh Figure of Merit , 2013 .

[214]  Peter W. Glynn,et al.  A new approach to unbiased estimation for SDE's , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[215]  Josef Dick,et al.  Equidistribution Properties of Generalized Nets and Sequences , 2009 .

[216]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[217]  Ben Niu,et al.  Deterministic Multi-level Algorithms for Infinite-dimensional Integration on {$\mathbb{R}^{\mathbb{N}}$} , 2010 .

[218]  H. Woxniakowski Information-Based Complexity , 1988 .

[219]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[220]  Dirk Nuyens,et al.  Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.

[221]  Michael Gnewuch,et al.  On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..

[222]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[223]  F. J. Hickernell Quadrature Error Bounds with Applications to Lattice Rules , 1997 .

[224]  Henryk Wozniakowski,et al.  Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..

[225]  Frances Y. Kuo,et al.  The smoothing effect of integration in Rd and the ANOVA decomposition , 2013, Math. Comput..

[226]  Peter Kritzer,et al.  Constructions of general polynomial lattice rules based on the weighted star discrepancy , 2007, Finite Fields Their Appl..

[227]  H. Wozniakowski,et al.  A new algorithm and worst case complexity for Feynman-Kac path integration , 2000 .

[228]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[229]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[230]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[231]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[232]  Dirk Nuyens,et al.  Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.

[233]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[234]  Friedrich Pillichshammer,et al.  Discrepancy of Hyperplane Nets and Cyclic Nets , 2009 .

[235]  Dirk Nuyens,et al.  A Component-by-Component Construction for the Trigonometric Degree , 2012 .

[236]  R. Adler The Geometry of Random Fields , 2009 .

[237]  Henryk Wozniakowski,et al.  Finite-order weights imply tractability of linear multivariate problems , 2004, J. Approx. Theory.

[238]  Wolfgang Ch. Schmid,et al.  Representation of functions as Walsh series to different bases and an application to the numerical integration of high-dimensional Walsh series , 1994 .

[239]  Harald Niederreiter,et al.  Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series , 1996 .

[240]  Ronald Cools,et al.  Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree , 2001, Math. Comput..

[241]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[242]  M. Griebel Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .

[243]  Roswitha Hofer,et al.  AN EXPLICIT CONSTRUCTION OF FINITE-ROW DIGITAL (0, s)-SEQUENCES , 2011 .

[244]  Bruno Tuffin,et al.  A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance , 2006, J. Complex..

[245]  Michael Gnewuch,et al.  Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..

[246]  Henryk Wozniakowski,et al.  Intractability Results for Integration and Discrepancy , 2001, J. Complex..

[247]  Frances Y. Kuo,et al.  Component-By-Component Construction of Good Intermediate-Rank Lattice Rules , 2003, SIAM J. Numer. Anal..

[248]  Magnus Wahlström,et al.  Implementation of a Component-By-Component Algorithm to Generate Small Low-Discrepancy Samples , 2009 .

[249]  Henryk Wozniakowski,et al.  Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..

[250]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[251]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[252]  I. Sloan,et al.  Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .

[253]  Josef Dick,et al.  QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .

[254]  Fred J. Hickernell,et al.  The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..

[255]  Michael Gnewuch,et al.  Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..

[256]  Wolfgang Ch. Schmid,et al.  Improvements and Extensions of the “Salzburg Tables” by Using Irreducible Polynomials , 2000 .

[257]  Peter Kritzer,et al.  Duality theory and propagation rules for generalized digital nets , 2010, Math. Comput..

[258]  Avram Sidi,et al.  A New Variable Transformation for Numerical Integration , 1993 .

[259]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[260]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .