The Ribosomal Peptidyl Transferase Center: Structure, Function, Evolution, Inhibition

ABSTRACT The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring riboyzmes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.

[1]  L. Rice,et al.  Recombination Proficiency Influences Frequency and Locus of Mutational Resistance to Linezolid in Enterococcus faecalis , 2003, Antimicrobial Agents and Chemotherapy.

[2]  S. Pestka Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. , 1969, Biochemical and biophysical research communications.

[3]  A. Barta,et al.  Metal ion probing of rRNAs: evidence for evolutionarily conserved divalent cation binding pockets. , 1998, RNA.

[4]  A. Mankin,et al.  Ribosomal and non‐ribosomal resistance to oxazolidinones: species‐specific idiosyncrasy of ribosomal alterations , 2002, Molecular microbiology.

[5]  B. Maden,et al.  Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value. , 1968, European journal of biochemistry.

[6]  K. Marotti,et al.  Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions , 1997, Antimicrobial agents and chemotherapy.

[7]  P. Boer,et al.  Scrambled ribosomal RNA gene pieces in chlamydomonas reinhardtii mitochondrial DNA , 1988, Cell.

[8]  Excherichia Colp Studies on Transfer Ribonucleic Acid-Ribosome Complexes , 2002 .

[9]  A. Bera,et al.  In vitro protein folding by ribosomes from Escherichia coli, wheat germ and rat liver: the role of the 50S particle and its 23S rRNA. , 1996, European journal of biochemistry.

[10]  L. Peterson,et al.  Resistance to Linezolid: Characterization of Mutations in rRNA and Comparison of Their Occurrences in Vancomycin-Resistant Enterococci , 2001, Antimicrobial Agents and Chemotherapy.

[11]  T. W. O'brien,et al.  Nuclear MRP genes and mitochondrial disease. , 2005, Gene.

[12]  B. Maden,et al.  Ribosome‐Catalyzed Peptidyl Transfer , 1968 .

[13]  Adam Roth,et al.  Ribozyme speed limits. , 2003, RNA.

[14]  Jennifer A. Doudna,et al.  The chemical repertoire of natural ribozymes , 2002, Nature.

[15]  Rachel Green,et al.  The Active Site of the Ribosome Is Composed of Two Layers of Conserved Nucleotides with Distinct Roles in Peptide Bond Formation and Peptide Release , 2004, Cell.

[16]  W. Tate,et al.  The ribosomal binding and peptidyl-tRNA hydrolysis functions of Escherichia coli release factor 2 are linked through residue 246. , 2000, RNA.

[17]  K. Parnell,et al.  Evidence against stabilization of the transition state oxyanion by a pKa-perturbed RNA base in the peptidyl transferase center , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  B. Vestergaard,et al.  Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. , 2001, Molecular cell.

[19]  D. Vazquez,et al.  Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes: Binding of UACCA‐Leu to 50 S subunits , 1971, FEBS letters.

[20]  D. Shinabarger Mechanism of action of the oxazolidinone antibacterial agents. , 1999, Expert opinion on investigational drugs.

[21]  R. Zarivach,et al.  Structural basis for the antibiotic activity of ketolides and azalides. , 2003, Structure.

[22]  K. Lieberman,et al.  Genetic probes of ribosomal RNA function. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[23]  P. Khaitovich,et al.  Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase , 2000 .

[24]  J. F. Snell,et al.  Mechanism of Action of Antimicrobial and Antitumor Agents , 1975, Antibiotics.

[25]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[26]  J. Thompson,et al.  Site-directed mutagenesis of Escherichia coli 23 S ribosomal RNA at position 1067 within the GTP hydrolysis centre. , 1988, Journal of molecular biology.

[27]  A. Yonath,et al.  Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin , 2004, Molecular microbiology.

[28]  R. Garrett,et al.  Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach. , 1995, Journal of molecular biology.

[29]  H. Noller The driving force for molecular evolution of translation. , 2004, RNA.

[30]  Daniel N. Wilson,et al.  Mapping Functionally Important Motifs SPF and GGQ of the Decoding Release Factor RF2 to the Escherichia coli Ribosome by Hydroxyl Radical Footprinting , 2003, The Journal of Biological Chemistry.

[31]  H. Ramu,et al.  A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. , 2005, Molecular cell.

[32]  E. Cundliffe Antibiotics and polyribosomes. II. Some effects of lincomycin, spiramycin, and streptogramin A in vivo. , 1969, Biochemistry.

[33]  E. Bergmann,et al.  Mode of Action of Chloramphenicol , 1952, Nature.

[34]  A. Rich,et al.  Ribosome-catalyzed ester formation. , 1970, Biochemistry.

[35]  B. Cooperman,et al.  Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[36]  D. Vazquez,et al.  Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes , 1970, FEBS letters.

[37]  Thomas A Steitz,et al.  Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. , 2003, Journal of molecular biology.

[38]  Frauke Pohlki,et al.  The Mechanism of the , 2001, Angewandte Chemie.

[39]  Thomas A Steitz,et al.  RNA, the first macromolecular catalyst: the ribosome is a ribozyme. , 2003, Trends in biochemical sciences.

[40]  T. Cech,et al.  In vitro splicing of the ribosomal RNA precursor of tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence , 1981, Cell.

[41]  R. Garrett,et al.  The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. , 1988, The EMBO journal.

[42]  Gregor Blaha,et al.  Structures of MLSBK Antibiotics Bound to Mutated Large Ribosomal Subunits Provide a Structural Explanation for Resistance , 2005, Cell.

[43]  A. Mankin,et al.  The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. , 2003, Molecular cell.

[44]  T. Cech,et al.  Peptide bond formation by in vitro selected ribozymes , 1997, Nature.

[45]  M. W. Gray,et al.  Sixteen discrete RNA components in the cytoplasmic ribosome of Euglena gracilis. , 1990, Journal of molecular biology.

[46]  Jill K Thompson,et al.  The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. , 2002, Journal of Molecular Biology.

[47]  H. Noller 8 On the Origin of the Ribosome: Coevolution of Subdomains of tRNA and rRNA , 1999 .

[48]  T. Cech,et al.  The Ribosome Is a Ribozyme , 2000, Science.

[49]  H. Noller,et al.  Unusual resistance of peptidyl transferase to protein extraction procedures. , 1992, Science.

[50]  A. Zollner,et al.  Mutation of a highly conserved base in the yeast mitochondrial 21S rRNA restricts ribosomal frameshifting , 1995, Molecular and General Genetics MGG.

[51]  V. Blinov,et al.  Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. , 1999, RNA.

[52]  J. Davies,et al.  What are antibiotics? Archaic functions for modern activities , 1990, Molecular microbiology.

[53]  W. Wooster,et al.  Crystal structure of , 2005 .

[54]  H. Noller,et al.  A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome , 1995, Nature.

[55]  S. Douthwaite,et al.  Oxazolidinone Resistance Mutations in 23S rRNA ofEscherichia coli Reveal the Central Region of Domain V as the Primary Site of Drug Action , 2000, Journal of bacteriology.

[56]  I. Majerfeld,et al.  23S rRNA similarity from selection for peptidyl transferase mimicry. , 1997, Biochemistry.

[57]  Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Mankin,et al.  Cross-linking in the Living Cell Locates the Site of Action of Oxazolidinone Antibiotics* , 2003, Journal of Biological Chemistry.

[59]  K. Nierhaus,et al.  Ribosomal components from Escherichia coli 50 S subunits involved in the reconstitution of peptidyltransferase activity. , 1981, The Journal of biological chemistry.

[60]  S. Douthwaite Functional interactions within 23S rRNA involving the peptidyltransferase center , 1992, Journal of bacteriology.

[61]  K. Lieberman,et al.  The importance of conserved nucleotides of 23 S ribosomal RNA and transfer RNA in ribosome catalyzed peptide bond formation. , 1994, The Journal of biological chemistry.

[62]  R. Green,et al.  Base-pairing between 23S rRNA and tRNA in the ribosomal A site. , 1999, Molecular cell.

[63]  Thomas A Steitz,et al.  On the structural basis of peptide‐bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit , 2005, FEBS letters.

[64]  H. Noller,et al.  Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  R. Green,et al.  Ribosomal Rna and Group I Introns , 1996 .

[66]  T. Cech,et al.  Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. , 1998, Chemistry & biology.

[67]  R. Garrett,et al.  Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium , 1991, Journal of bacteriology.

[68]  A. Zamir,et al.  The inactivation and reactivation of ribosomal-peptidyl transferase of E. coli. , 1968, Biochemical and biophysical research communications.

[69]  H. White Coenzymes as fossils of an earlier metabolic state , 1976, Journal of Molecular Evolution.

[70]  S. Dorner,et al.  Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2'-OH to activity. , 2003, Nucleic acids research.

[71]  D. Vazquez,et al.  Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes. , 1977, European journal of biochemistry.

[72]  A. E. Dahlberg,et al.  Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A. Mankin,et al.  Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. , 1999, Journal of molecular biology.

[74]  D. Lilley The origins of RNA catalysis in ribozymes. , 2003, Trends in biochemical sciences.

[75]  E. A. Morgan,et al.  Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli , 1985, Journal of bacteriology.

[76]  A. Mankin,et al.  Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide , 2001, Nature.

[77]  N. Ivanova,et al.  [Mutation of a glutamine residue in the universal tripeptide GGQ in human eRF1 termination factor does not cause complete loss of its activity]. , 2000, Molekuliarnaia biologiia.

[78]  H. Noller,et al.  Ribosomes and translation. , 1997, Annual review of biochemistry.

[79]  R. Lührmann,et al.  Decoding at the ribosomal A site: antibiotics, misreading and energy of aminoacyl-tRNA binding. , 1987, Biochimie.

[80]  K. Nierhaus,et al.  Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstitution. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[81]  L. Gold,et al.  RNA aptamers to the peptidyl transferase inhibitor chloramphenicol. , 1997, Chemistry & biology.

[82]  Jill K Thompson,et al.  The A2453-C2499 wobble base pair in Escherichia coli 23S ribosomal RNA is responsible for pH sensitivity of the peptidyltransferase active site conformation. , 2004, Nucleic acids research.

[83]  B. Vester,et al.  The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome , 2001, Molecular microbiology.

[84]  R. Micura,et al.  Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451 , 2005, Nucleic acids research.

[85]  R. Garrett,et al.  Antibiotic interactions at the GTPase‐associated centre within Escherichia coli 23S rRNA. , 1989, The EMBO journal.

[86]  H. Noller Peptidyl transferase: protein, ribonucleoprotein, or RNA? , 1993, Journal of bacteriology.

[87]  H F Noller,et al.  Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site , 1995, Science.

[88]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[89]  L. H. Hansen,et al.  The macrolide–ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA , 1999, Molecular microbiology.

[90]  Anna Marie Pyle,et al.  RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. , 2003, Nucleic acids research.

[91]  B. Ganem RNA world , 1987, Nature.

[92]  M. Kukhanova,et al.  [The peptidyltransferase center of ribosomes--what is it?]. , 1985, Molekuliarnaia biologiia.

[93]  E. Cundliffe How antibiotic-producing organisms avoid suicide. , 1989, Annual review of microbiology.

[94]  J. Frank,et al.  A cryo-electron microscopic study of ribosome-bound termination factor RF2 , 2003, Nature.

[95]  A. Mankin,et al.  SPARK--a novel method to monitor ribosomal peptidyl transferase activity. , 2002, Biochemistry.

[96]  I. Craig,et al.  Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance , 1981, Nature.

[97]  S. Pestka Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosoms from Escherichia coli. , 1972, The Journal of biological chemistry.

[98]  B. Vester,et al.  Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. , 2000, Journal of molecular biology.

[99]  S. Douthwaite,et al.  Macrolide Resistance Conferred by Base Substitutions in 23S rRNA , 2001, Antimicrobial Agents and Chemotherapy.

[100]  D. Barford,et al.  The Crystal Structure of Human Eukaryotic Release Factor eRF1—Mechanism of Stop Codon Recognition and Peptidyl-tRNA Hydrolysis , 2000, Cell.

[101]  P. Khaitovich,et al.  Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA. , 1999, Journal of molecular biology.

[102]  M. Rodnina,et al.  The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. , 2003, RNA.

[103]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[104]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[105]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[106]  Annette Sievers,et al.  The ribosome as an entropy trap. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[107]  J. S. Weinger,et al.  Substrate-assisted catalysis of peptide bond formation by the ribosome , 2004, Nature Structural &Molecular Biology.

[108]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[109]  A. Mankin,et al.  Binding Site of the Bridged Macrolides in the Escherichia coli Ribosome , 2005, Antimicrobial Agents and Chemotherapy.

[110]  J. Wower,et al.  Ribosomal Protein L27 Participates in both 50 S Subunit Assembly and the Peptidyl Transferase Reaction* , 1998, The Journal of Biological Chemistry.

[111]  S. Strobel,et al.  pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. , 2001, RNA.

[112]  Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines. , 1981, Nucleic acids research.

[113]  P. Schimmel,et al.  Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[114]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[115]  P. Khaitovich,et al.  Characterization of functionally active subribosomal particles from Thermus aquaticus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[116]  T. Steitz,et al.  A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits , 2002, Nature Structural Biology.

[117]  M. Ehrenberg,et al.  Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. , 2002, Molecular cell.

[118]  H. Noller,et al.  Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. , 1987, Biochimie.

[119]  A. D. Wolfe,et al.  MODE OF ACTION OF CHLORAMPHENICOL. IX. EFFECTS OF CHLORAMPHENICOL UPON A RIBOSOMAL AMINO ACID POLYMERIZATION SYSTEM AND ITS BINDING TO BACTERIAL RIBOSOME. , 1965, Biochimica et biophysica acta.

[120]  S. Dorner,et al.  A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[121]  F. H. C. CRICK,et al.  Origin of the Genetic Code , 1967, Nature.

[122]  Role for the highly conserved region of domain IV of 23S-like rRNA in subunit-subunit interactions at the peptidyl transferase centre. , 1995, Nucleic acids research.

[123]  Thomas A Steitz,et al.  Structural insights into peptide bond formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[124]  R. Berisio,et al.  Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation, facilitates peptide‐bond formation, chirality discrimination and antibiotics synergism , 2004, FEBS letters.

[125]  T. Pallasch Macrolide antibiotics. , 1997, Dentistry today.

[126]  S. Pestka,et al.  Antibiotics as Probes of Ribosome Structure: Binding of Chloramphenicol and Erythromycin to Polyribosomes; Effect of Other Antibiotics , 1974, Antimicrobial Agents and Chemotherapy.

[127]  A. Yonath,et al.  From peptide‐bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects , 2005, FEBS letters.

[128]  T. Steitz,et al.  The contribution of metal ions to the structural stability of the large ribosomal subunit. , 2004, RNA.

[129]  M. Ehrenberg,et al.  Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli , 2003, Molecular microbiology.

[130]  H. Noller On the origin of the ribosome Coevolution of subdomains of tRNA and rRNA , 1999 .

[131]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[132]  Ulrich Stelzl,et al.  Protein synthesis at atomic resolution: mechanistics of translation in the light of highly resolved structures for the ribosome. , 2002, Current protein & peptide science.

[133]  A. Mankin,et al.  23S rRNA positions essential for tRNA binding in ribosomal functional sites. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[134]  A. Mankin,et al.  A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Garrett,et al.  Movement of the 3′‐end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics , 1997, FEBS letters.

[136]  Malte Beringer,et al.  Essential Mechanisms in the Catalysis of Peptide Bond Formation on the Ribosome* , 2005, Journal of Biological Chemistry.

[137]  G. Högenauer,et al.  The effects of tiamulin, a semisynthetic pleuromutilin derivative, on bacterial polypeptide chain initiation. , 1978, European journal of biochemistry.

[138]  S. Pestka Peptidyl-puromycin synthesis on polyribosomes from Escherichia coli. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[139]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[140]  Wolfgang Wintermeyer,et al.  Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. , 2002, Molecular cell.

[141]  pKa of adenine 2451 in the ribosomal peptidyl transferase center remains elusive. , 2001, RNA.

[142]  P. Khaitovich,et al.  Peptidyl transferase activity catalyzed by protein-free 23S ribosomal RNA remains elusive. , 1999, RNA.

[143]  F. Dohme,et al.  Role of 5S RNA in assembly and function of the 50S subunit from Escherichia coli. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[144]  A. Mankin,et al.  Binding Site of Macrolide Antibiotics on the Ribosome: New Resistance Mutation Identifies a Specific Interaction of Ketolides with rRNA , 2001, Journal of bacteriology.

[145]  S. Strobel,et al.  A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. , 2000, Science.

[146]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.

[147]  K. Marcker,et al.  Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[148]  Måns Ehrenberg,et al.  The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. , 2003, Journal of molecular biology.

[149]  Poul Nissen,et al.  The structures of four macrolide antibiotics bound to the large ribosomal subunit. , 2002, Molecular cell.

[150]  A. Zamir,et al.  The possible involvement of peptidyl transferase in the termination step of protein biosynthesis. , 1969, Biochemistry.

[151]  Chris M. Brown,et al.  Translational termination: "stop" for protein synthesis or "pause" for regulation of gene expression. , 1992, Biochemistry.

[152]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[153]  R. Berisio,et al.  Structural Insight into the Antibiotic Action of Telithromycin against Resistant Mutants , 2003, Journal of bacteriology.

[154]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[155]  R. Garrett,et al.  Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. , 1995, Journal of molecular biology.

[156]  A. Mankin,et al.  A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre , 1999, Molecular microbiology.

[157]  M Yarus,et al.  An inhibitor of ribosomal peptidyl transferase using transition-state analogy. , 1995, Biochemistry.

[158]  Bruno P. Klaholz,et al.  Visualization of release factor 3 on the ribosome during termination of protein synthesis , 2004, Nature.

[159]  H. Bartels,et al.  Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin , 2004, BMC Biology.

[160]  L. Kisselev,et al.  Substitutions of the Glutamine Residue in the ubiquitous GGQ tripeptide in human eRF1 do not entirely abolish the release factor activity , 2000, Molecular Biology.

[161]  S. Strobel,et al.  Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. , 2004, Nucleic acids research.

[162]  R. Zarivach,et al.  23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A-->G. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[163]  K. Lieberman,et al.  Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy. , 1994, Nucleic acids research.

[164]  L. Frolova,et al.  Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. , 2001, Nucleic acids research.

[165]  A. Beaudet,et al.  Hydrolysis of fMet-tRNA by peptidyl transferase. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[166]  R. Miskin,et al.  Inactivation and reactivation of ribosomal subunits: the peptidyl transferase activity of the 50 s subunit of Escherihia coli. , 1970, Journal of molecular biology.

[167]  H. Noller,et al.  Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites , 1989, Cell.

[168]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.