Effect of Electrode Composition and Microstructure on Impedancemetric Nitric Oxide Sensors Based on YSZ Electrolyte
暂无分享,去创建一个
Robert F. Novak | Robert S. Glass | Raymond J. Gorte | R. Glass | R. Gorte | J. Visser | Wensheng Wang | L. Woo | Sukwon Jung | R. F. Novak | L. Martin | L. Peter Martin | Leta Y. Woo | Wensheng Wang | Sukwon Jung | Erica Perry Murray | Jaco Visser | E. Murray | L. Peter Martin | Robert S. Glass | Erica P. Murray | Robert F. Novak | J.H Visser
[1] R. Huggins. Solid State Ionics , 1989 .
[2] E. Garboczi,et al. Experimental limitations in impedance spectroscopy: Part III. Effect of reference electrode geometry/position , 1997 .
[3] Mogens Bjerg Mogensen,et al. Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy , 2007 .
[4] F. Ménil,et al. Nitrogen monoxide detection with a planar spinel coated amperometric sensor , 2001 .
[5] R. Glass,et al. Aging Studies of Sr-Doped LaCrO3 ∕ YSZ ∕ Pt Cells for an Electrochemical NO x Sensor , 2005 .
[6] E. Wachsman,et al. Temperature-Programmed Reaction and Desorption of the Sensor Elements of a WO3 ∕ YSZ ∕ Pt Potentiometric Sensor , 2006 .
[7] Larry R. Pederson,et al. Experimental limitations in impedance spectroscopy: Part I — simulation of reference electrode artifacts in three-point measurements , 1996 .
[8] Y. Takeda,et al. Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .
[9] Robert S. Glass,et al. Impedancemetric NO x Sensing Using YSZ Electrolyte and YSZ ∕ Cr2O3 Composite Electrodes , 2007 .
[10] M. Koyama,et al. Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode , 2000 .
[11] J. Vohs,et al. The Stability of LSF-YSZ Electrodes Prepared by Infiltration , 2007 .
[12] R. Glass,et al. Impedance Characterization of a Model Au ∕ Yttria -Stabilized Zirconia ∕ Au Electrochemical Cell in Varying Oxygen and NO x Concentrations , 2006 .
[13] J. Vohs,et al. Impedance Spectroscopy for the Characterization of Cu-Ceria-YSZ Anodes for SOFCs , 2003 .
[14] Bruno Scrosati,et al. Fast Ion Transport in Solids , 1993 .
[15] T. R. Armstrong,et al. "NO-selective" NOx sensing elements for combustion exhausts , 2005 .
[16] Prabir K. Dutta,et al. High‐Temperature Ceramic Gas Sensors: A Review , 2006 .
[17] Wolfgang Göpel,et al. Gas analysis with arrays of solid state electrochemical sensors: implications to monitor HCs and NOx in exhausts , 1996 .
[18] J. Otomo,et al. The Mechanism of Porous Sm0.5Sr0.5CoO3 Cathodes Used in Solid Oxide Fuel Cells , 2001 .
[19] A. Mcevoy,et al. Oxygen diffusion through silver cathodes for solid oxide fuel cells , 1994 .
[20] Fred C. Montgomery,et al. “Total NO x ” Sensing Elements with Compositionally Identical Oxide Electrodes , 2006 .
[21] Johann Riegel,et al. Exhaust gas sensors for automotive emission control , 2002 .
[22] Larry R. Pederson,et al. Experimental limitations in impedance spectroscopy: Part II — electrode artifacts in three-point measurements on Pt/YSZ , 1996 .
[23] Nianqiang Wu,et al. Impedance-metric Pt/YSZ/Au–Ga2O3 sensor for CO detection at high temperature , 2005 .
[24] B. Boukamp,et al. THE OXYGEN TRANSFER PROCESS ON SOLID OXIDE/NOBLE METAL ELECTRODES, STUDIED WITH IMPEDANCE SPECTROSCOPY, dc POLARIZATION AND ISOTOPE EXCHANGE , 1993 .
[25] Claude Lucat,et al. Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines , 2000 .
[26] W. Göpel,et al. Trends in the development of solid state amperometric and potentiometric high temperature sensors , 2000 .
[27] Norio Miura,et al. Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature , 2003 .
[28] Suk Woo Nam,et al. Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells , 2004 .
[29] J. Vohs,et al. Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes , 2006 .
[30] N. Minh. Ceramic Fuel Cells , 1993 .
[31] J. Vohs,et al. Synthesis of Highly Porous Yttria‐Stabilized Zirconia by Tape‐Casting Methods , 2003 .
[32] Ralf Moos,et al. A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics , 2005 .
[33] H. Iwahara,et al. Dependence of observed overvoltages on the positioning of the reference electrode on the solid electrolyte , 1994 .
[34] A. Nowick,et al. Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as Electrolyte I . Steady‐State Overpotential , 1979 .
[35] Norio Miura,et al. Development of NOx sensing devices based on YSZ and oxide electrode aiming for monitoring car exhausts , 2004 .
[36] Armelle Ringuedé,et al. Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures , 2001 .
[37] C. Schwandt,et al. Kinetics of Oxygen, Platinum/Stabilized Zirconia and Oxygen, Gold/Stabilized Zirconia Electrodes under Equilibrium Conditions , 1997 .
[38] O. J. Velle,et al. The electrode system ‖ZrO2: 8Y2O3 investigated by impedence spectroscopy , 1991 .
[39] W. Kenan,et al. Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .
[40] B. Boukamp,et al. Electrode polarization at the Au, O2 (g) / yttria stabilized zirconia interface. Part II: electrochemical measurements and analysis , 1991 .
[41] Mogens Bjerg Mogensen,et al. Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .
[42] S. Adler. Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.
[43] D. Bedeaux,et al. A Gerischer phase element in the impedance diagram of the polymer electrolyte membrane fuel cell anode. , 2005, The journal of physical chemistry. B.
[44] J. Vohs,et al. Effect of Polarization on and Implications for Characterization of LSM-YSZ Composite Cathodes , 2004 .