Effect of Electrode Composition and Microstructure on Impedancemetric Nitric Oxide Sensors Based on YSZ Electrolyte

The role of metal (Au, Pt, and Ag) electrodes in yttria-stabilized zirconia (YSZ) electrolyte-based impedancemetric nitric oxide (NO) sensors is investigated using impedance spectroscopy and equivalent circuit analysis. Focus on the metal/porous YSZ interface is based on previous studies using a symmetric cell (metal/YSZ porous /YSZ dense /YSZ porous /metal) and attempts to further elucidate the important processes responsible for sensing. The current test cell consists of a rectangular slab of porous YSZ with two metal-wire loop electrodes (metal/YSZ porous /metal), both exposed to the same atmosphere. Of the electrode materials, only Au was sensitive to changes in NO concentration. The impedance behavior of porous Au electrodes in a slightly different configuration was compared with dense Au electrodes and was also insensitive to NO. Although the exact mechanism is not determined, the composition and microstructure of the metal electrode seem to alter the rate-limiting step of the interfering O 2 reaction. Impedance behavior of the O 2 reaction that is limited by processes occurring away from the triple-phase boundary may be crucial for impedancemetric NO sensing.

[1]  R. Huggins Solid State Ionics , 1989 .

[2]  E. Garboczi,et al.  Experimental limitations in impedance spectroscopy: Part III. Effect of reference electrode geometry/position , 1997 .

[3]  Mogens Bjerg Mogensen,et al.  Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy , 2007 .

[4]  F. Ménil,et al.  Nitrogen monoxide detection with a planar spinel coated amperometric sensor , 2001 .

[5]  R. Glass,et al.  Aging Studies of Sr-Doped LaCrO3 ∕ YSZ ∕ Pt Cells for an Electrochemical NO x Sensor , 2005 .

[6]  E. Wachsman,et al.  Temperature-Programmed Reaction and Desorption of the Sensor Elements of a WO3 ∕ YSZ ∕ Pt Potentiometric Sensor , 2006 .

[7]  Larry R. Pederson,et al.  Experimental limitations in impedance spectroscopy: Part I — simulation of reference electrode artifacts in three-point measurements , 1996 .

[8]  Y. Takeda,et al.  Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .

[9]  Robert S. Glass,et al.  Impedancemetric NO x Sensing Using YSZ Electrolyte and YSZ ∕ Cr2O3 Composite Electrodes , 2007 .

[10]  M. Koyama,et al.  Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode , 2000 .

[11]  J. Vohs,et al.  The Stability of LSF-YSZ Electrodes Prepared by Infiltration , 2007 .

[12]  R. Glass,et al.  Impedance Characterization of a Model Au ∕ Yttria -Stabilized Zirconia ∕ Au Electrochemical Cell in Varying Oxygen and NO x Concentrations , 2006 .

[13]  J. Vohs,et al.  Impedance Spectroscopy for the Characterization of Cu-Ceria-YSZ Anodes for SOFCs , 2003 .

[14]  Bruno Scrosati,et al.  Fast Ion Transport in Solids , 1993 .

[15]  T. R. Armstrong,et al.  "NO-selective" NOx sensing elements for combustion exhausts , 2005 .

[16]  Prabir K. Dutta,et al.  High‐Temperature Ceramic Gas Sensors: A Review , 2006 .

[17]  Wolfgang Göpel,et al.  Gas analysis with arrays of solid state electrochemical sensors: implications to monitor HCs and NOx in exhausts , 1996 .

[18]  J. Otomo,et al.  The Mechanism of Porous Sm0.5Sr0.5CoO3 Cathodes Used in Solid Oxide Fuel Cells , 2001 .

[19]  A. Mcevoy,et al.  Oxygen diffusion through silver cathodes for solid oxide fuel cells , 1994 .

[20]  Fred C. Montgomery,et al.  “Total NO x ” Sensing Elements with Compositionally Identical Oxide Electrodes , 2006 .

[21]  Johann Riegel,et al.  Exhaust gas sensors for automotive emission control , 2002 .

[22]  Larry R. Pederson,et al.  Experimental limitations in impedance spectroscopy: Part II — electrode artifacts in three-point measurements on Pt/YSZ , 1996 .

[23]  Nianqiang Wu,et al.  Impedance-metric Pt/YSZ/Au–Ga2O3 sensor for CO detection at high temperature , 2005 .

[24]  B. Boukamp,et al.  THE OXYGEN TRANSFER PROCESS ON SOLID OXIDE/NOBLE METAL ELECTRODES, STUDIED WITH IMPEDANCE SPECTROSCOPY, dc POLARIZATION AND ISOTOPE EXCHANGE , 1993 .

[25]  Claude Lucat,et al.  Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines , 2000 .

[26]  W. Göpel,et al.  Trends in the development of solid state amperometric and potentiometric high temperature sensors , 2000 .

[27]  Norio Miura,et al.  Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature , 2003 .

[28]  Suk Woo Nam,et al.  Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells , 2004 .

[29]  J. Vohs,et al.  Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes , 2006 .

[30]  N. Minh Ceramic Fuel Cells , 1993 .

[31]  J. Vohs,et al.  Synthesis of Highly Porous Yttria‐Stabilized Zirconia by Tape‐Casting Methods , 2003 .

[32]  Ralf Moos,et al.  A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics , 2005 .

[33]  H. Iwahara,et al.  Dependence of observed overvoltages on the positioning of the reference electrode on the solid electrolyte , 1994 .

[34]  A. Nowick,et al.  Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as Electrolyte I . Steady‐State Overpotential , 1979 .

[35]  Norio Miura,et al.  Development of NOx sensing devices based on YSZ and oxide electrode aiming for monitoring car exhausts , 2004 .

[36]  Armelle Ringuedé,et al.  Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures , 2001 .

[37]  C. Schwandt,et al.  Kinetics of Oxygen, Platinum/Stabilized Zirconia and Oxygen, Gold/Stabilized Zirconia Electrodes under Equilibrium Conditions , 1997 .

[38]  O. J. Velle,et al.  The electrode system ‖ZrO2: 8Y2O3 investigated by impedence spectroscopy , 1991 .

[39]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[40]  B. Boukamp,et al.  Electrode polarization at the Au, O2 (g) / yttria stabilized zirconia interface. Part II: electrochemical measurements and analysis , 1991 .

[41]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[42]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[43]  D. Bedeaux,et al.  A Gerischer phase element in the impedance diagram of the polymer electrolyte membrane fuel cell anode. , 2005, The journal of physical chemistry. B.

[44]  J. Vohs,et al.  Effect of Polarization on and Implications for Characterization of LSM-YSZ Composite Cathodes , 2004 .