Gaussian-type Quadrature Rules for Müntz Systems
暂无分享,去创建一个
[1] Christoph W. Ueberhuber. Numerical computation : methods, software, and analysis , 1997 .
[2] Gradimir V. Milovanović,et al. Müntz Orthogonal Polynomials and Their Numerical Evaluation , 1999 .
[3] Gradimir V. Milovanović,et al. Numerical Calculation of Integrals Involving Oscillatory and Singular Kernels and Some Applications of Quadratures , 1998 .
[4] Norman Yarvin,et al. Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..
[5] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[6] W. J. Studden,et al. Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .
[7] Tamás Erdélyi,et al. Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .
[8] P. Borwein,et al. Polynomials and Polynomial Inequalities , 1995 .
[9] C. Harris,et al. Extension of numerical quadrature formulae to cater for end point singular behaviours over finite intervals , 1977 .
[10] Aleksandar S. Cvetković,et al. NUMERICAL INTEGRATION OF FUNCTIONS WITH LOGARITHMIC END POINT SINGULARITY ∗ , 2003 .
[11] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[12] Aleksandar S. Cvetković,et al. NOTE ON A CONSTRUCTION OF WEIGHTS IN GAUSS-TYPE QUADRATURE RULE , 2005 .
[13] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[14] Walter Van Assche. Approximation theory and analytic number theory , 1998 .
[15] Vladimir Rokhlin,et al. Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .
[16] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[17] P. C. Mccarthy,et al. Generalized Legendre polynomials , 1993 .
[18] WALTER GAUTSCHI. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.
[19] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[20] J. A. Shohat. On a certain formula of mechanical quadratures with non-equidistant ordinates , 1929 .