MHF Preprint Series Kyushu University 21 st Century COE Program Development of Dynamic Mathematics with High Functionality Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

Summary.General error estimates are proved for a class of finite element schemes for nonstationary thermal convection problems with temperature-dependent coefficients. These variable coefficients turn the diffusion and the buoyancy terms to be nonlinear, which increases the nonlinearity of the problems. An argument based on the energy method leads to optimal error estimates for the velocity and the temperature without any stability conditions. Error estimates are also provided for schemes modified by approximate coefficients, which are used conveniently in practical computations.

[1]  Masahisa Tabata Finite element approximation to infinite Prandtl number Boussinesq equations with temperature-dependent coefficients - Thermal convection problems in a spherical shell , 2006, Future Gener. Comput. Syst..

[2]  J. T. Ratcliff,et al.  Transitions in thermal convection with strongly variable viscosity , 1997 .

[3]  Masahisa Tabata,et al.  A stabilized finite element method for the Rayleigh–Bénard equations with infinite Prandtl number in a spherical shell , 2000 .

[4]  R. Viskanta,et al.  Identification of the structure of the three dimensional thermal flow in an idling container glass melter , 1987 .

[5]  Ivo Babuška,et al.  Mathematical Modeling and Numerical Simulation in Continuum Mechanics , 2001 .

[6]  M. Tabata,et al.  A finite element analysis for a thermal convection problem with the infinite Prandtl number , 1998 .

[7]  Masahisa Tabata,et al.  Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows , 2000 .

[8]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[9]  A finite element analysis of thermal convection problems with the Joule heat , 2003 .

[10]  Mathematical Modeling and Numerical Simulation of Earth’s Mantle Convection , 2002 .

[11]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[12]  Christine Bernardi,et al.  Couplage des équations de Navier-Stokes et de la chaleur : le modèle et son approximation par éléments finis , 1995 .

[13]  William Layton,et al.  Error analysis for finite element methods for steady natural convection problems , 1990 .

[14]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Masahisa Tabata Uniform solvability of finite element solutions in approximate domains , 2001 .

[17]  Edward A. Spiegel,et al.  Rayleigh‐Bénard Convection: Structures and Dynamics , 1998 .

[18]  William Layton,et al.  An analysis of the finite element method for natural convection problems , 1990 .

[19]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[20]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[21]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[22]  José Luiz Boldrini,et al.  The initial value problem for a generalized Boussinesq model , 1999 .