Lessons from nature: biomimetic subwavelength structures for high‐performance optics

In nature, optical structures in the subwavelength range have been evolved over millions of years. For example, in the form of ‘moth-eye’ structures they show a strong anti-reflective effect on the compound eyes of night-active insects and therefore offer a successful protection over predators. In this contribution the advantages and challenges to transfer this natural concept of subwavelength structured optical interfaces to high-end optical systems are discussed. Here, in comparison to alternative conventional multilayer systems, the bioinspired anti-reflective structures offer a wide wavelength range and a broad angle dependency. Additionally, adhesion problems are reduced drastically. Simultaneously to the theoretical consideration of the best profile form of the subwavelength structures, appropriate realization technologies have been developed in recent years, where both top-down and bottom-up approaches have been investigated. Depending on the choice of the structuring technique, anti-reflective subwavelength structures are applicable to a wide spectrum of optical elements ranging from micro-optical components to aspheres for applications in imaging and also illumination setups of high-end optical instruments.

[1]  R. Winfield,et al.  Moth-eye-structured light-emitting diodes , 2010 .

[2]  Guangzhao Mao,et al.  Colloidal subwavelength nanostructures for antireflection optical coatings. , 2005, Optics letters.

[3]  N Streibl,et al.  Holographic quarterwave plates. , 1990, Applied optics.

[4]  A. Tünnermann,et al.  Stochastic subwavelength structures on poly(methyl methacrylate) surfaces for antireflection generated by plasma treatment. , 2008, Applied optics.

[5]  J. Boilot,et al.  Latex-Templated Silica Films: Tailoring Porosity to Get a Stable Low-Refractive Index , 2010 .

[6]  Philippe Lalanne,et al.  Waveguiding in blazed-binary diffractive elements , 1999 .

[7]  Yeshaiahu Fainman,et al.  Polarizing beam splitters constructed of form-birefringent multilayer gratings , 1996, Photonics West.

[8]  Zhongfan Liu,et al.  Precise replication of antireflective nanostructures from biotemplates , 2007 .

[9]  Andreas Tünnermann,et al.  Plasma-etched organic layers for antireflection purposes. , 2011, Applied optics.

[10]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[11]  Peng Jiang,et al.  Bioinspired Self‐Cleaning Antireflection Coatings , 2008 .

[12]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[13]  Joachim P. Spatz,et al.  Micellar Nanoreactors—Preparation and Characterization of Hexagonally Ordered Arrays of Metallic Nanodots , 2003 .

[14]  Norbert Kaiser,et al.  NANO-motheye antireflection pattern by plasma treatment of polymers , 2005 .

[15]  Hans Zappe,et al.  Tunable microfluidic microlenses. , 2005, Applied optics.

[16]  Shojiro Kawakami,et al.  FABRICATION OF 3D PHOTONIC CRYSTALS BY AUTOCLONING AND ITS APPLICATIONS , 1998 .

[17]  A. Tünnermann,et al.  Antireflection of transparent polymers by advanced plasma etching procedures. , 2007, Optics express.

[18]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[19]  Yang Li,et al.  A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. , 2009, Chemical communications.

[20]  Koichi Iwata,et al.  Guided-mode resonant grating filter with an antireflection structured surface. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Peng Jiang,et al.  Bioinspired broadband antireflection coatings on GaSb , 2008 .

[22]  Yeshaiahu Fainman,et al.  Form birefringent microstructures: modeling and design , 1995, Photonics West.

[23]  Peng Jiang,et al.  Biomimetic subwavelength antireflective gratings on GaAs. , 2008, Optics letters.

[24]  D. Ganguli,et al.  A sol-gel-derived antireflective coating on optical glass for near-infrared applications , 1989 .

[25]  J. Spatz,et al.  Block Copolymer Micelle Nanolithography , 2003 .

[26]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[27]  Yu-Hwa Lo,et al.  Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view , 2005 .

[28]  R. Brunner,et al.  Tailored antireflective biomimetic nanostructures for UV applications , 2010, Nanotechnology.

[29]  N Streibl,et al.  Binary blazed reflection gratings. , 1994, Applied optics.

[30]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[31]  Michael A Golub,et al.  Analytic design and solutions for resonance domain diffractive optical elements. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Din-Guo Chen,et al.  Anti-reflection (AR) coatings made by sol–gel processes: A review , 2001 .

[33]  W H Southwell,et al.  Antireflection surfaces in silicon using binary optics technology. , 1992, Applied optics.

[34]  Peng Jiang,et al.  Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures , 2008, Nanotechnology.

[35]  Bai Yang,et al.  Patterning Colloidal Crystals and Nanostructure Arrays by Soft Lithography , 2010 .

[36]  Plinio Innocenzi,et al.  Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Sol−Gel Coatings: An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells , 2010 .

[37]  Bai Yang,et al.  Morphology and wettability control of silicon cone arrays using colloidal lithography. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[38]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[39]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[40]  Timothy J. Drabik,et al.  Optimized binary, phase-only, diffractive optical element with subwavelength features for 1.55 μm , 1995 .

[41]  N. Yamada,et al.  Optimization of anti‐reflection moth‐eye structures for use in crystalline silicon solar cells , 2011 .

[42]  Jérôme Primot,et al.  Wollaston prism-like devices based on blazed dielectric subwavelength gratings. , 2005, Optics express.

[43]  C. Bernhard,et al.  Structural and functional adaptation in a visual system - Strukturelle und funktionelle Adaptation in einem visuellen System , 1967 .

[44]  Hao-Chung Kuo,et al.  Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns , 2009 .

[45]  G. D. Bernard,et al.  Interference filters in the corneas of Diptera. , 1968, Investigative ophthalmology.

[46]  Choon-Gi Choi,et al.  Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process , 2010 .

[47]  Michio Matsumura,et al.  Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst , 2006 .

[48]  Mikael Karlsson,et al.  Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. , 2003, Optics express.

[49]  Edmond Cambril,et al.  Realization of sinusoidal transmittance with subwavelength metallic structures , 2008 .

[50]  U. Schulz,et al.  Wideband antireflection coatings by combining interference multilayers with structured top layers. , 2009, Optics express.

[51]  Nicholas K. Sheridon,et al.  PRODUCTION OF BLAZED HOLOGRAMS , 1968 .

[52]  Ross C. McPhedran,et al.  On the theory and solar application of inductive grids , 1977 .

[53]  Bai Yang,et al.  Antireflective surfaces based on biomimetic nanopillared arrays , 2010 .

[54]  G. M. Morris,et al.  Antireflection structured surfaces for the infrared spectral region. , 1993, Applied optics.

[55]  C. L. Nagendra,et al.  Multilayer antireflection coatings for the visible and near-infrared regions. , 1997, Applied optics.

[56]  V. Baier,et al.  High temperature resistant antireflective moth-eye structures for infrared radiation sensors , 2005 .

[57]  Volker Wittwer,et al.  Antireflective submicrometer surface-relief gratings for solar applications , 1998 .

[58]  Surojit Chattopadhyay,et al.  Anti-reflecting and photonic nanostructures , 2010 .

[59]  Kazuyoshi Iida,et al.  High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure , 2005 .

[60]  Takeharu Okuno Development of subwavelength structure coating (SWC) and its application to imaging lenses , 2010, International Optical Design Conference.

[61]  Philippe Lalanne,et al.  On the effective medium theory of subwavelength periodic structures , 1996 .

[62]  Kuniaki Nagayama,et al.  Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces , 1996 .

[63]  Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction , 2009 .

[64]  Jean-Pol Vigneron,et al.  Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration , 2011 .

[65]  Y Fainman,et al.  Design considerations of form birefringent microstructures. , 1995, Applied optics.

[66]  Wilhelm Stork,et al.  Zero-order gratings used as an artificial distributed index medium , 1992 .

[67]  Peng Jiang,et al.  Templated fabrication of large area subwavelength antireflection gratings on silicon , 2007 .

[68]  L. Chi,et al.  Biomimetic antireflective hierarchical arrays. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[69]  J. Spatz Nano- and micropatterning by organic-inorganic templating of hierarchical self-assembled structures. , 2002, Angewandte Chemie.

[70]  E. Fred Schubert,et al.  Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics , 2008 .

[71]  Lifeng Chi,et al.  Biomimetic antireflective Si nanopillar arrays. , 2008, Small.

[72]  A. Parker,et al.  A vision for natural photonics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[73]  H. Craighead,et al.  Diffractive phase elements based on two-dimensional artificial dielectrics. , 1995, Optics letters.

[74]  C. J. Brinker,et al.  Sol-gel derived antireflective coatings for silicon , 1981 .

[75]  D. K. Yi,et al.  Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[76]  Chii-Rong Yang,et al.  Fabrication of nanoporous antireflection surfaces on silicon , 2008 .

[77]  J N Mait,et al.  Binary subwavelength diffractive-lens design. , 1998, Optics letters.

[78]  Y. Fainman,et al.  Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter , 1997 .

[79]  Orlin D. Velev,et al.  Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction , 2007 .

[80]  Sarah Kim,et al.  Nanomachining by colloidal lithography. , 2006, Small.

[81]  Joachim P Spatz,et al.  Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations. , 2010, Optics express.

[82]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[83]  G. Schottner,et al.  Functionalized coatings based on inorganic–organic polymers (ORMOCER®s) and their combination with vapor deposited inorganic thin films , 1999 .

[84]  Robert Brunner,et al.  Microspectrometer based on holographically recorded diffractive elements using supplementary holograms. , 2008, Optics express.

[85]  Bai Yang,et al.  Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[86]  M W Farn,et al.  Binary gratings with increased efficiency. , 1992, Applied optics.

[87]  Jun-ho Jeong,et al.  An Antireflective Nanostructure Array Fabricated by Nanosilver Colloidal Lithography on a Silicon Substrate , 2010, Nanoscale research letters.

[88]  P. Chavel,et al.  Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. , 1998, Optics letters.

[89]  Hsuen‐Li Chen,et al.  Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. , 2007, Optics express.

[90]  R. Brunner,et al.  Analysis of the influence of the passive facet of blazed transmission gratings in the intermediate diffraction regime. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[91]  Joachim P Spatz,et al.  Biomimetic interfaces for high-performance optics in the deep-UV light range. , 2008, Nano letters.

[92]  Jérôme Hazart,et al.  A transmission polarizing beam splitter grating , 1999 .

[93]  P. Jiang Large-scale fabrication of periodic nanostructured materials by using hexagonal non-close-packed colloidal crystals as templates. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[94]  C. M. Horwitz,et al.  A new solar selective surface , 1974 .

[95]  L. Chi,et al.  Simple approach to wafer-scale self-cleaning antireflective silicon surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.