Inter- and intra-tumor heterogeneity of genetic and immune profiles in inherited renal cell carcinoma.

[1]  U. Capitanio,et al.  European Association of Urology Guidelines on Renal Cell Carcinoma: The 2022 Update. , 2022, European urology.

[2]  P. Brennan,et al.  Evaluation of tumour surveillance protocols and outcomes in von Hippel-Lindau disease in a national health service , 2022, British Journal of Cancer.

[3]  S. Hancock,et al.  Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. , 2022, Journal of the National Comprehensive Cancer Network : JNCCN.

[4]  C. Leslie,et al.  Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. , 2021, Cancer cell.

[5]  C. Porta,et al.  Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. , 2021, The New England journal of medicine.

[6]  C. Porta,et al.  Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. , 2021, The New England journal of medicine.

[7]  S. Loi,et al.  Intratumoral heterogeneity in cancer progression and response to immunotherapy , 2021, Nature Medicine.

[8]  Nicolai J. Birkbak,et al.  Geospatial immune variability illuminates differential evolution of lung adenocarcinoma , 2020, Nature Medicine.

[9]  S. Miyano,et al.  Landscape and function of multiple mutations within individual oncogenes , 2020, Nature.

[10]  Rosalyn W. Sayaman,et al.  Germline genetic contribution to the immune landscape of cancer , 2020, bioRxiv.

[11]  Gustavo Stolovitzky,et al.  Intratumoral heterogeneity and clonal evolution in liver cancer , 2020, Nature Communications.

[12]  A. Ribas,et al.  Tumour-intrinsic resistance to immune checkpoint blockade , 2019, Nature Reviews Immunology.

[13]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[14]  Sohini Ramachandran,et al.  Germline features associated with immune infiltration in solid tumors , 2019, bioRxiv.

[15]  B. Helmink,et al.  The microbiome, cancer, and cancer therapy , 2019, Nature Medicine.

[16]  Z. Szallasi,et al.  Neoantigen-directed immune escape in lung cancer evolution , 2019, Nature.

[17]  R. Motzer,et al.  Avelumab plus Axitinib versus Sunitinib for Advanced Renal‐Cell Carcinoma , 2019, The New England journal of medicine.

[18]  Leonard D. Goldstein,et al.  An Empirical Approach Leveraging Tumorgrafts to Dissect the Tumor Microenvironment in Renal Cell Carcinoma Identifies Missing Link to Prognostic Inflammatory Factors. , 2018, Cancer discovery.

[19]  Chuang Tan,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[20]  P. A. Futreal,et al.  Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal , 2018, Cell.

[21]  Zoltan Szallasi,et al.  Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal , 2018, Cell.

[22]  Mark W. Ball,et al.  Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma , 2018, Science.

[23]  M. Berger,et al.  Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy , 2018, Science.

[24]  Laurence Zitvogel,et al.  Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors , 2018, Science.

[25]  Riyue Bao,et al.  The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients , 2018, Science.

[26]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[27]  S. Miyano,et al.  Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. , 2017, Blood.

[28]  S. Elledge,et al.  Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy , 2017, Science.

[29]  Ludmila V. Danilova,et al.  Erratum to: Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures , 2016, Genome Biology.

[30]  W. Chung,et al.  Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[32]  Patrick Danaher,et al.  Gene expression markers of Tumor Infiltrating Leukocytes , 2016, Journal of Immunotherapy for Cancer.

[33]  Paul T. Spellman,et al.  Patient-specific factors influence somatic variation patterns in von Hippel–Lindau disease renal tumours , 2016, Nature Communications.

[34]  O. Nureki,et al.  Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. , 2015, Blood.

[35]  H. Aburatani,et al.  Integrated molecular analysis of adult T cell leukemia/lymphoma , 2015, Nature Genetics.

[36]  Andrew Menzies,et al.  Subclonal diversification of primary breast cancer revealed by multiregion sequencing , 2015, Nature Medicine.

[37]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[38]  Z. Szallasi,et al.  Spatial and temporal diversity in genomic instability processes defines lung cancer evolution , 2014, Science.

[39]  Nikhil Wagle,et al.  Response and acquired resistance to everolimus in anaplastic thyroid cancer. , 2014, The New England journal of medicine.

[40]  Francesco Favero,et al.  Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution , 2014, Genome Biology.

[41]  P. A. Futreal,et al.  Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing , 2014, Nature Genetics.

[42]  C. Sander,et al.  SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. , 2013, Cancer cell.

[43]  H. Aburatani,et al.  Integrated molecular analysis of clear-cell renal cell carcinoma , 2013, Nature Genetics.

[44]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[45]  H. Kume,et al.  An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data , 2013, Nucleic acids research.

[46]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[47]  S. Richard,et al.  von Hippel–Lindau disease: A clinical and scientific review , 2011, European Journal of Human Genetics.

[48]  Meghana Kulkarni Digital multiplexed gene expression analysis using the NanoString nCounter system. , 2011, Current protocols in molecular biology.

[49]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[50]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[51]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[52]  Arianna Di Napoli,et al.  Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. , 2009, Cancer research.

[53]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.