PET kinetic analysis: error consideration of quantitative analysis in dynamic studies

Positron emission tomography dynamic studies have been performed to quantify several biomedical functions. In a quantitative analysis of these studies, kinetic parameters were estimated by mathematical methods, such as a nonlinear least-squares algorithm with compartmental model and graphical analysis. In this estimation, the uncertainty in the estimated kinetic parameters depends on the signal-to-noise ratio and quantitative analysis method. This review describes the reliability of parameter estimates for various analysis methods in reversible and irreversible models.

[1]  S. Kety The theory and applications of the exchange of inert gas at the lungs and tissues. , 1951, Pharmacological reviews.

[2]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[3]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[4]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[5]  A. Alavi,et al.  The [18F]Fluorodeoxyglucose Method for the Measurement of Local Cerebral Glucose Utilization in Mane , 1979, Circulation research.

[6]  E. Hoffman,et al.  Tomographic measurement of local cerebral glucose metabolic rate in humans with (F‐18)2‐fluoro‐2‐deoxy‐D‐glucose: Validation of method , 1979, Annals of neurology.

[7]  E. Hoffman,et al.  Noninvasive determination of local cerebral metabolic rate of glucose in man. , 1980, The American journal of physiology.

[8]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  G Blomqvist,et al.  On the Construction of Functional Maps in Positron Emission Tomography , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  M. Mintun,et al.  A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography , 1984, Annals of neurology.

[11]  C. Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  S. Huang,et al.  Weighted Integration Method for Local Cerebral Blood Flow Measurements with Positron Emission Tomography , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  Alan C. Evans,et al.  Effect of selecting a fixed dephosphorylation rate on the estimation of rate constants and rCMRGlu from dynamic [18F] fluorodeoxyglucose/PET data. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  D E Kuhl,et al.  Compartmental Analysis of [11C]Flumazenil Kinetics for the Estimation of Ligand Transport Rate and Receptor Distribution Using Positron Emission Tomography , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  Scott T. Grafton,et al.  Kinetics and Modeling of l-6-[18F]Fluoro-DOPA in Human Positron Emission Tomographic Studies , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  R. Myers,et al.  Quantitation of Carbon‐11‐labeled raclopride in rat striatum using positron emission tomography , 1992, Synapse.

[18]  G Lucignani,et al.  Measurement of regional cerebral glucose utilization with fluorine-18-FDG and PET in heterogeneous tissues: theoretical considerations and practical procedure. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  A. Gjedde,et al.  6-[18F]fluoro-l-DOPA Metabolism in Living Human Brain: A Comparison of Six Analytical Methods , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  Peter Herscovitch,et al.  An approximation formula for the variance of PET region-of-interest values , 1993, IEEE Trans. Medical Imaging.

[21]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[22]  M E Phelps,et al.  The assessment of the non-equilibrium effect in the 'Patlak analysis' of Fdopa PET studies. , 1995, Physics in medicine and biology.

[23]  David Dagan Feng,et al.  An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data , 1995, IEEE Trans. Medical Imaging.

[24]  N. Volkow,et al.  Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  D J Brooks,et al.  Comparison of Methods for Analysis of Clinical [11C]Raclopride Studies , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  A. Lammertsma,et al.  Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.

[27]  L Cinotti,et al.  Error analysis on parameter estimates in the ligand-receptor model: application to parameter imaging using PET data. , 1996, Physics in medicine and biology.

[28]  H. Kung,et al.  Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  A Uchiyama,et al.  [Comparison of the number of parameters using nonlinear iteration methods for compartment model analysis with 18F-FDG brain PET]. , 1997, Kaku igaku. The Japanese journal of nuclear medicine.

[30]  Vincent J. Cunningham,et al.  Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model , 1997, NeuroImage.

[31]  C Burger,et al.  Requirements and implementation of a flexible kinetic modeling tool. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[32]  A. Gjedde,et al.  Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms , 1998, Synapse.

[33]  A Uchiyama,et al.  [Creation of a dynamic digital phantom and its application to a kinetic analysis]. , 1998, Kaku igaku. The Japanese journal of nuclear medicine.

[34]  G Lucignani,et al.  Estimation of Component and Parameter Distributions in Spectral Analysis , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[35]  C. Halldin,et al.  Quantification of [11C]FLB 457 Binding to Extrastriatal Dopamine Receptors in the Human Brain , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  W C Eckelman,et al.  Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[37]  M Slifstein,et al.  Effects of statistical noise on graphic analysis of PET neuroreceptor studies. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  D L Alexoff,et al.  A Strategy for Removing the Bias in the Graphical Analysis Method , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  Richard E Carson,et al.  Noise Reduction in the Simplified Reference Tissue Model for Neuroreceptor Functional Imaging , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  Robert B. Innis,et al.  Strategies to Improve Neuroreceptor Parameter Estimation by Linear Regression Analysis , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  Zsolt Szabo,et al.  Modified Regression Model for the Logan Plot , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[42]  William H. Press,et al.  Numerical recipes in C , 2002 .

[43]  Irène Buvat,et al.  A non-parametric bootstrap approach for analysing the statistical properties of SPECT and PET images. , 2002, Physics in medicine and biology.

[44]  Hinako Toyama,et al.  Quantitative Analysis for Estimating Binding Potential of the Brain Serotonin Transporter with [11C]McN5652 , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[45]  Cyril Riddell,et al.  A linear wavelet filter for parametric imaging with dynamic PET , 2003, IEEE Transactions on Medical Imaging.

[46]  Jeih-San Liow,et al.  Linearized Reference Tissue Parametric Imaging Methods: Application to [11C]DASB Positron Emission Tomography Studies of the Serotonin Transporter in Human Brain , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[47]  R Todd Ogden,et al.  Estimation of kinetic parameters in graphical analysis of PET imaging data , 2003, Statistics in medicine.

[48]  Sunil L. Kukreja,et al.  Bootstrapped DEPICT for error estimation in PET functional imaging , 2004, NeuroImage.

[49]  Akihiko Uchiyama,et al.  MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG , 2006, NeuroImage.

[50]  Yuichi Sugiyama,et al.  Quantitative analysis of 11C-verapamil transfer at the human blood-brain barrier for evaluation of P-glycoprotein function. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[51]  R Todd Ogden,et al.  Estimation in regression models with externally estimated parameters. , 2005, Biostatistics.

[52]  Yuichi Kimura,et al.  PET kinetic analysis—compartmental model , 2006, Annals of nuclear medicine.

[53]  R. Parsey,et al.  In vivo Quantification of Serotonin Transporters Using [11C]DASB and Positron Emission Tomography in Humans: Modeling Considerations , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[54]  M. Mishina,et al.  Distribution volume as an alternative to the binding potential for sigma1 receptor imaging , 2007, Annals of nuclear medicine.

[55]  Ryuji Nakao,et al.  Quantitative Analysis for Estimating Binding Potential of the Peripheral Benzodiazepine Receptor with [11C]DAA1106 , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[56]  Yuichi Kimura,et al.  PET kinetic analysis —Pitfalls and a solution for the Logan plot , 2007, Annals of nuclear medicine.