Metapopulation theory for fragmented landscapes.

We review recent developments in spatially realistic metapopulation theory, which leads to quantitative models of the dynamics of species inhabiting highly fragmented landscapes. Our emphasis is in stochastic patch occupancy models, which describe the presence or absence of the focal species in habitat patches. We discuss a number of ecologically important quantities that can be derived from the full stochastic models and their deterministic approximations, with a particular aim of characterizing the respective roles of the structure of the landscape and the properties of the species. These quantities include the threshold condition for persistence, the contributions that individual habitat patches make to metapopulation dynamics and persistence, the time to metapopulation extinction, and the effective size of a metapopulation living in a heterogeneous patch network.

[1]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[2]  Ricard V. Solé,et al.  Modeling spatiotemporal dynamics in ecology , 1998 .

[3]  Ilkka Hanski,et al.  The Metapopulation Approach, Its History, Conceptual Domain, and Application to Conservation , 1997 .

[4]  Otso Ovaskainen,et al.  The metapopulation capacity of a fragmented landscape , 2000, Nature.

[5]  L. Fahrig How much habitat is enough , 2001 .

[6]  E. Seneta,et al.  On quasi-stationary distributions in absorbing continuous-time finite Markov chains , 1967, Journal of Applied Probability.

[7]  K. Crowell Experimental Zoogeography: Introductions of Mice to Small Islands , 1973, The American Naturalist.

[8]  Atte Moilanen,et al.  Implications of empirical data quality to metapopulation model parameter estimation and application , 2002 .

[9]  I. Hanski,et al.  Patch-occupancy dynamics in fragmented landscapes. , 1994, Trends in ecology & evolution.

[10]  A. Veitch,et al.  The Effect of an Upper Limit to Population Size on Persistence Time , 1995 .

[11]  David B. Lindenmayer,et al.  Decision theory for population viability analysis , 2002 .

[12]  S. Pimm The Balance of Nature?: Ecological Issues in the Conservation of Species and Communities , 1992 .

[13]  R. H. Norden On the distribution of the time to extinction in the stochastic logistic population model , 1982, Advances in Applied Probability.

[14]  Otso Ovaskainen,et al.  Transient dynamics in metapopulation response to perturbation. , 2002, Theoretical population biology.

[15]  A. King,et al.  Extinction Thresholds for Species in Fractal Landscapes , 1999 .

[16]  Matt J Keeling,et al.  Metapopulation moments: coupling, stochasticity and persistence. , 2000, The Journal of animal ecology.

[17]  Mats Gyllenberg,et al.  Uniting Two General Patterns in the Distribution of Species , 1997, Science.

[18]  R. Macarthur,et al.  AN EQUILIBRIUM THEORY OF INSULAR ZOOGEOGRAPHY , 1963 .

[19]  Nick M. Haddad,et al.  CORRIDOR AND DISTANCE EFFECTS ON INTERPATCH MOVEMENTS: A LANDSCAPE EXPERIMENT WITH BUTTERFLIES , 1999 .

[20]  O. Ovaskainen,et al.  Spatially structured metapopulation models: global and local assessment of metapopulation capacity. , 2001, Theoretical population biology.

[21]  M. Whitlock,et al.  The effective size of a subdivided population. , 1997, Genetics.

[22]  Hannu Toivonen,et al.  BAYESIAN ANALYSIS OF METAPOPULATION DATA , 2002 .

[23]  George H. Weiss,et al.  Stochastic theory of nonlinear rate processes with multiple stationary states , 1977 .

[24]  Atte Moilanen,et al.  The equilibrium assumption in estimating the parameters of metapopulation models. , 2000 .

[25]  S. Ferson,et al.  Quantitative Methods for Conservation Biology , 2002, Springer New York.

[26]  M. Gilpin,et al.  Metapopulation dynamics: a brief his-tory and conceptual domain , 1991 .

[27]  D. J. Bartholomew,et al.  Continuous time diffusion models with random duration of interest , 1976 .

[28]  M. Gilpin,et al.  Metapopulation Biology: Ecology, Genetics, and Evolution , 1997 .

[29]  Atte Moilanen,et al.  PATCH OCCUPANCY MODELS OF METAPOPULATION DYNAMICS: EFFICIENT PARAMETER ESTIMATION USING IMPLICIT STATISTICAL INFERENCE , 1999 .

[30]  A. O. Nicholls,et al.  Selecting networks of reserves to maximise biological diversity , 1988 .

[31]  Atte Moilanen,et al.  SIMPLE CONNECTIVITY MEASURES IN SPATIAL ECOLOGY , 2002 .

[32]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[33]  Karin Frank,et al.  Spatial aspects of metapopulation survival – from model results to rules of thumb for landscape management , 1998, Landscape Ecology.

[34]  Otso Ovaskainen,et al.  How much does an individual habitat fragment contribute to metapopulation dynamics and persistence? , 2003, Theoretical population biology.

[35]  Atte Moilanen,et al.  On the use of connectivity measures in spatial ecology , 2001 .

[36]  I. Hanski,et al.  Natural history of some Siberian melitaeine butterfly species (Nymphalidae: Melitaeini) and their parasitoids , 2001 .

[37]  Atte Moilanen,et al.  ESTIMATING THE PARAMETERS OF SURVIVAL AND MIGRATION OF INDIVIDUALS IN METAPOPULATIONS , 2000 .

[38]  Otso Ovaskainen,et al.  The quasistationary distribution of the stochastic logistic model , 2001, Journal of Applied Probability.

[39]  R. Lande Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes , 1993, The American Naturalist.

[40]  M Cabeza,et al.  Design of reserve networks and the persistence of biodiversity. , 2001, Trends in ecology & evolution.

[41]  Jordi Bascompte,et al.  Metapopulation models for extinction threshold in spatially correlated landscapes. , 2002, Journal of theoretical biology.

[42]  Lenore Fahrig,et al.  EFFECT OF HABITAT FRAGMENTATION ON THE EXTINCTION THRESHOLD: A SYNTHESIS* , 2002 .

[43]  Bryan T Grenfell,et al.  Mathematical Tools for Planning Effective Intervention Scenarios for Sexually Transmitted Diseases , 2003, Sexually transmitted diseases.

[44]  Jana Verboom,et al.  Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS based random walk model , 1996 .

[45]  Jason Pither,et al.  An Experimental Assessment of Landscape Connectivity , 1998 .

[46]  Ilkka Hanski,et al.  On Expected Lifetimes of Small-Bodied and Large-Bodied Species of Birds on Islands , 1995, The American Naturalist.

[47]  I. Hanski A Practical Model of Metapopulation Dynamics , 1994 .

[48]  Ilkka Hanski,et al.  Spatially realistic theory of metapopulation ecology , 2001, Naturwissenschaften.

[49]  M. Crawley,et al.  Correlates of Introduction Success in Exotic New Zealand Birds , 1996, The American Naturalist.

[50]  A. Dobson,et al.  The population dynamics and conservation of primate populations. , 1989, Conservation biology : the journal of the Society for Conservation Biology.

[51]  Otso Ovaskainen,et al.  Extinction threshold in metapopulation models , 2003 .

[52]  R L Pressey,et al.  Beyond opportunism: Key principles for systematic reserve selection. , 1993, Trends in ecology & evolution.

[53]  Richard Law,et al.  Beetles in fragmented woodlands: a formal framework for dynamics of movement in ecological landscapes , 2000 .

[54]  Atte Moilanen,et al.  Single‐species dynamic site selection , 2002 .

[55]  D. Lindenmayer,et al.  Extinction Debts and Risks Faced by Abundant Species , 1997 .

[56]  Karin Frank,et al.  A Formula for the Mean Lifetime of Metapopulations in Heterogeneous Landscapes , 2002, The American Naturalist.

[57]  Richard J. Kryscio,et al.  On the Extinction of the S–I–S stochastic logistic epidemic , 1989 .

[58]  Rampal S. Etienne,et al.  IMPROVED BAYESIAN ANALYSIS OF METAPOPULATION DATA WITH AN APPLICATION TO A TREE FROG METAPOPULATION , 2003 .

[59]  I. Hanski Dynamics of small mammals on islands , 1993 .

[60]  Hal Caswell,et al.  Habitat fragmentation and extinction thresholds on fractal landscapes , 1999 .

[61]  M. Whitlock,et al.  The Evolution of Metapopulations , 1997 .

[62]  Hugh P. Possingham,et al.  A Stochastic Metapopulation Model with Variability in Patch Size and Position , 1995 .

[63]  J A Jacquez,et al.  The stochastic SI model with recruitment and deaths. I. Comparison with the closed SIS model. , 1993, Mathematical biosciences.

[64]  Otso Ovaskainen,et al.  The Effective Size of a Metapopulation Living in a Heterogeneous Patch Network , 2002, The American Naturalist.

[65]  Jacqueline McGlade,et al.  Advanced Ecological Theory , 1999 .

[66]  S. Wright Evolution in mendelian populations , 1931 .

[67]  George H. Weiss,et al.  On the asymptotic behavior of the stochastic and deterministic models of an epidemic , 1971 .

[68]  Ingemar Nåsell,et al.  The quasi-stationary distribution of the closed endemic sis model , 1996, Advances in Applied Probability.

[69]  R. May,et al.  Two-Species Metapopulation Models , 1997 .

[70]  R. Lande,et al.  Extinction Thresholds in Demographic Models of Territorial Populations , 1987, The American Naturalist.

[71]  Ilkka Hanski,et al.  CONNECTING THE PARAMETERS OF LOCAL EXTINCTION AND METAPOPULATION DYNAMICS , 1998 .

[72]  I. Jonsen,et al.  Calopteryx Damselfly Dispersions Arising from Multiscale Responses to Landscape Structure , 2000 .

[73]  Robert D. Holt,et al.  7 – From Metapopulation Dynamics to Community Structure: Some Consequences of Spatial Heterogeneity , 1997 .

[74]  Atte Moilanen,et al.  Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches , 2001 .

[75]  W. Sheppe ISLAND POPULATIONS AND GENE FLOW IN THE DEER MOUSE, PEROMYSCUS LEUCOPUS , 1965 .

[76]  E. Seneta,et al.  On Quasi-Stationary distributions in absorbing discrete-time finite Markov chains , 1965, Journal of Applied Probability.

[77]  Timothy H. Keitt,et al.  Landscape connectivity: A conservation application of graph theory , 2000 .

[78]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[79]  T. Ebenhard,et al.  Colonization in metapopulations: a review of theory and observations , 1991 .

[80]  R. Levins Evolution in Changing Environments , 1968 .

[81]  L. Fahrig,et al.  On the usage and measurement of landscape connectivity , 2000 .

[82]  P. Foley,et al.  Predicting Extinction Times from Environmental Stochasticity and Carrying Capacity , 1994 .

[83]  J. Byers CORRELATED RANDOM WALK EQUATIONS OF ANIMAL DISPERSAL RESOLVED BY SIMULATION , 2001 .

[84]  Ilkka Hanski,et al.  Metapopulation dynamics : empirical and theoretical investigations , 1991 .

[85]  Ilkka Hanski,et al.  Inferences from Ecological Incidence Functions , 1992, The American Naturalist.