Boundary Waves and Stability of the Perfectly Matched Layer for the Two Space Dimensional Elastic Wave Equation in Second Order Form

Boundary waves and stability of the perfectly matched layer for the two space dimensional elastic wave equation in second order form

[1]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[2]  Thomas Hagstrom,et al.  New Results on Absorbing Layers and Radiation Boundary Conditions , 2003 .

[3]  Dimitri Komatitsch,et al.  Elastic surface waves in crystals. Part 1: review of the physics. , 2011, Ultrasonics.

[4]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[5]  L. Greengard,et al.  Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .

[6]  Heinz-Otto Kreiss,et al.  Hyperbolic Initial Boundary Value Problems which are not Boundary Stable , 2008 .

[7]  Kenneth Duru,et al.  Perfectly matched layers for second order wave equations , 2010 .

[8]  Heinz-Otto Kreiss,et al.  Difference Approximations for the Second Order Wave Equation , 2002, SIAM J. Numer. Anal..

[9]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[10]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[11]  Kenneth Duru,et al.  On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides , 2012, J. Sci. Comput..

[12]  Kenneth Duru,et al.  A Well-Posed and Discretely Stable Perfectly Matched Layer for Elastic Wave Equations in Second Order Formulation , 2012 .

[13]  N. Anders Petersson,et al.  Perfectly matched layers for Maxwell's equations in second order formulation , 2005 .

[14]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[15]  Dan Givoli,et al.  Radiation boundary conditions for time-dependent waves based on complete plane wave expansions , 2010, J. Comput. Appl. Math..

[16]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[17]  Heinz-Otto Kreiss,et al.  Boundary Estimates for the Elastic Wave Equation in Almost Incompressible Materials , 2011, SIAM J. Numer. Anal..

[18]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[19]  Kurt Friedrichs,et al.  On Symmetrizable Differential Operators , 1986 .

[20]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[21]  L. Rayleigh On Waves Propagated along the Plane Surface of an Elastic Solid , 1885 .

[22]  Dimitri Komatitsch,et al.  Elastic surface waves in crystals--part 2: cross-check of two full-wave numerical modeling methods. , 2011, Ultrasonics.

[23]  E. A. Skelton,et al.  Guided elastic waves and perfectly matched layers , 2007 .

[24]  B. Gustafsson High Order Difference Methods for Time Dependent PDE , 2008 .

[25]  J.-P. Wrenger,et al.  Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs , 2002 .

[26]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[27]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[28]  Kenneth Duru,et al.  Numerical interaction of boundary waves with perfectly matched layers in two space dimensional elastic waveguides , 2014 .

[29]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[30]  Marcus J. Grote,et al.  On local nonreflecting boundary conditions for time dependent wave propagation , 2009 .

[31]  Andrew J. Majda,et al.  Absorbing Boundary Conditions for Numerical Simulation of Waves , 1977 .

[32]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[33]  Gianluca Iaccarino,et al.  Stable Boundary Treatment for the Wave Equation on Second-Order Form , 2009, J. Sci. Comput..

[34]  Gunilla Kreiss,et al.  Application of a perfectly matched layer to the nonlinear wave equation , 2007 .

[35]  G. Kreiss,et al.  Stable and conservative time propagators for second order hyperbolic systems , 2011 .

[36]  Kenneth Duru,et al.  Stable and High-Order Accurate Boundary Treatments for the Elastic Wave Equation on Second-Order Form , 2014, SIAM J. Sci. Comput..

[37]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[38]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[39]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[40]  N. Anders Petersson,et al.  An energy absorbing far-field boundary condition for the elastic wave equation , 2008 .

[41]  J. Achenbach Wave propagation in elastic solids , 1962 .

[42]  Tim Colonius,et al.  A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems , 2009, J. Comput. Phys..

[43]  Ya Yan Lu,et al.  Propagating modes in optical waveguides terminated by perfectly matched layers , 2005 .

[44]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[45]  H. Kreiss,et al.  Initial-boundary value problems for second order systems of partial differential equations∗ , 2010, 1012.1065.

[46]  M. Grote,et al.  Efficient PML for the Wave Equation , 2010, 1001.0319.