Method-of-moments formulation for the analysis of plasmonic nano-optical antennas.

We present a surface integral equation (SIE) to model the electromagnetic behavior of metallic objects at optical frequencies. The electric and magnetic current combined field integral equation considering both tangential and normal equations is applied. The SIE is solved by using a method-of-moments (MoM) formulation. The SIE-MoM approach is applied only on the material boundary surfaces and interfaces, avoiding the cumbersome volumetric discretization of the objects and the surrounding space required in differential-equation formulations. Some canonical examples have been analyzed, and the results have been compared with analytical reference solutions in order to prove the accuracy of the proposed method. Finally, two plasmonic Yagi-Uda nanoantennas have been analyzed, illustrating the applicability of the method to the solution of real plasmonic problems.

[1]  Jian-Ming Jin,et al.  A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies , 2003 .

[2]  T. Weiland A discretization model for the solution of Maxwell's equations for six-component fields , 1977 .

[3]  O. Martin,et al.  Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[5]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[6]  Te-kao Wu,et al.  Scattering from arbitrarily‐shaped lossy dielectric bodies of revolution , 1977 .

[7]  L. Landesa,et al.  High Scalability FMM-FFT Electromagnetic Solver for Supercomputer Systems , 2009, IEEE Antennas and Propagation Magazine.

[8]  R. Harrington,et al.  A surface formulation for characteristic modes of material bodies , 1977 .

[9]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[10]  O. Martin,et al.  Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[12]  Yahya Rahmat-Samii,et al.  The evaluation of MFIE integrals with the use of vector triangle basis functions , 1997 .

[13]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[14]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[15]  Carsten Rockstuhl,et al.  Plasmonic nanowire antennas: experiment, simulation, and theory. , 2010, Nano letters.

[16]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[17]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .

[18]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[19]  D. R. Wilton,et al.  E-Field, H-Field, and Combined Field Solution for Arbitrarily Shaped Three-Dimensional Dielectric Bodies , 1990 .

[20]  Nicolas Bonod,et al.  Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission. , 2010, ACS nano.

[21]  W. Challener,et al.  Near‐field radiation of bow‐tie antennas and apertures at optical frequencies , 2003, Journal of microscopy.

[22]  Luis Landesa,et al.  SUPERCOMPUTER AWARE APPROACH FOR THE SOLUTION OF CHALLENGING ELECTROMAGNETIC PROBLEMS , 2010 .

[23]  Seppo Järvenpää,et al.  Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods , 2005 .

[24]  P. Yla-Oijala,et al.  Application of combined field Integral equation for electromagnetic scattering by dielectric and composite objects , 2005, IEEE Transactions on Antennas and Propagation.

[25]  Jukka Sarvas,et al.  Surface Integral Equation Method for General Composite Metallic and Dielectric Structures with Junctions , 2005 .

[26]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[27]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[28]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[29]  Nicolas Bonod,et al.  Multipole methods for nanoantennas design: applications to Yagi-Uda configurations , 2011 .

[30]  P. Yla-Oijala,et al.  Calculation of CFIE impedance matrix elements with RWG and n/spl times/RWG functions , 2003 .

[31]  Roberto D. Graglia,et al.  On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle , 1993 .

[32]  L. Gurel,et al.  Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm , 2009, IEEE Transactions on Antennas and Propagation.

[33]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[34]  T. Taminiau,et al.  Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency , 2008 .

[35]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[36]  D. Wilton,et al.  Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains , 1984 .

[37]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[38]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[39]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[40]  Luis Landesa,et al.  MLFMA-FFT PARALLEL ALGORITHM FOR THE SO- LUTION OF LARGE-SCALE PROBLEMS IN ELECTRO- MAGNETICS (INVITED PAPER) , 2010 .

[41]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[42]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[43]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[44]  Mark L. Brongersma,et al.  Plasmonics: Engineering optical nanoantennas , 2008 .

[45]  Michael S. Yeung,et al.  Single integral equation for electromagnetic scattering by three-dimensional homogeneous dielectric objects , 1999 .

[46]  O. Muskens,et al.  Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. , 2006, cond-mat/0612689.

[47]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[48]  J. M. Taboada,et al.  Surface integral equation formulation for the analysis of left-handed metamaterials. , 2010, Optics express.