National Laboratory Title Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors Permalink

Neutrinoless double beta decay (0νββ ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them. DISCLAIMER: This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

D. R. Artusa | M. Deninno | N. Moggi | J. Beeman | E. Haller | R. Creswick | H. Farach | R. Maruyama | A. Woodcraft | X. Liu | I. Dafinei | L. Carbone | M. Pallavicini | L. Winslow | C. Rosenfeld | M. Clemenza | M. Maino | A. Smith | T. Banks | F. Ferroni | S. Morganti | S. Freedman | S. Domizio | C. Gotti | E. Norman | K. Heeger | G. Bari | Andrea Giachero | S. Zucchelli | Y. Ma | E. Fiorini | K. Kazkaz | F. Avignone | J. Goett | S. Trentalange | T. Wise | B. Fujikawa | R. Kadel | M. Balata | S. Nisi | G. Pessina | F. Terranova | Y. Kolomensky | F. Bellini | K. Han | A. Bersani | A. Giuliani | S. Capelli | O. Azzolini | C. Pira | T. O'donnell | D. Chiesa | E. Previtali | M. Sisti | M. Martinez | M. Franceschi | G. Ventura | V. Datskov | V. Palmieri | M. Biassoni | C. Cosmelli | T. Napolitano | L. Cardani | N. Casali | C. Tomei | M. Vignati | C. Bucci | A. Nucciotti | C. Brofferio | M. Faverzani | E. Ferri | O. Cremonesi | X. Cai | T. Gutierrez | M. Pavan | S. Pirrò | S. Sangiorgio | D. Fang | L. Canonica | P. Gorla | C. Nones | L. Zanotti | M. Pedretti | N. Scielzo | C. Maiano | M. Carrettoni | L. Ejzak | L. Gironi | F. Orio | L. Pattavina | C. Rusconi | R. Hennings-Yeomans | L. Taffarello | Y. Mei | G. Keppel | B. Wang | V. Pettinacci | X. Cao | C. Ligi | N. Chott | D. Orlandi | J. Ouellet | G. Piperno | A. Camacho | M. Vacri | G. Fernandes | M. Tenconi | B. Zhu | E. Sala | C. Zarra | A. Biasi | A. Dally | Y. Li | W. Tian | L. Wielgus | H. Huang | J. Wilson | V. Rampazzo | H. Wang | T. O’Donnell | A. Smith | X. Cao

[1]  J. Engel Nuclear matrix elements for double-β decay , 2015, 1511.00074.

[2]  D. Palioselitis Results on neutrinoless double beta decay of 76Ge from the GERDA experiment , 2015 .

[3]  J. Beeman,et al.  TeO 2 bolometers with Cherenkov signal tagging : towards next-generation neutrinoless double-beta decay experiments , 2015 .

[4]  F. Vissani,et al.  New expectations and uncertainties on neutrinoless double beta decay , 2014, 1404.2616.

[5]  P. Bernardis,et al.  Cryogenic Wide-Area Light Detectors for Neutrino and Dark Matter Searches , 2014 .

[6]  F. Iachello,et al.  57 22 v 1 [ nu clt h ] 2 5 S ep 2 01 2 Phase space factors for double-β decay , 2022 .

[7]  J. Beeman,et al.  Current status and future perspectives of the LUCIFER experiment , 2013 .

[8]  F. Descamps Neutrinoless double beta decay with SNO , 2013 .

[9]  P. Mcdonald,et al.  White Paper: Measuring the Neutrino Mass Hierarchy , 2013, 1307.5487.

[10]  J. Beeman,et al.  Performances of a large mass ZnSe bolometer to search for rare events , 2013, 1303.4080.

[11]  R. Robertson,et al.  Empirical Survey of Neutrinoless Double Beta Decay Matrix Elements , 2013, 1301.1323.

[12]  A. Giachero,et al.  Validation of techniques to mitigate copper surface contamination in CUORE , 2012, 1210.1107.

[13]  C. A. Ur,et al.  The Gerda experiment for the search of 0νββ decay in 76Ge , 2012, 1212.4067.

[14]  O. Civitarese,et al.  Review of the properties of the 0νβ−β− nuclear matrix elements , 2012 .

[15]  F. Šimkovic,et al.  Nuclear matrix elements for neutrinoless double-beta decay and double-electron capture , 2012, 1206.0464.

[16]  J J Russell,et al.  Search for neutrinoless double-beta decay in 136Xe with EXO-200. , 2012, Physical review letters.

[17]  E. Olivieri,et al.  Random coincidence of 2ν2β decay events as a background source in bolometric 0ν2β decay experiments , 2012, 1301.4248.

[18]  C. Giunti,et al.  Neutrinoless double-beta decay. A brief review , 2012, 1203.5250.

[19]  M. Auger,et al.  The EXO-200 detector, part I: detector design and construction , 2012, 1202.2192.

[20]  J. Beeman,et al.  ZnMoO4: a promising bolometer for neutrinoless double beta decay searches , 2012, 1202.0238.

[21]  J. Beeman,et al.  A next-generation neutrinoless double beta decay experiment based on ZnMoO4 scintillating bolometers , 2011, 1112.3672.

[22]  L. Gironi Pulse Shape Analysis with Scintillating Bolometers , 2011, 1111.6022.

[23]  D. Hauff,et al.  Results from 730 kg days of the CRESST-II Dark Matter search , 2011, 1109.0702.

[24]  Giulio Maier,et al.  CUORE crystal validation runs: Results on radioactive contamination and extrapolation to CUORE background , 2011, 1108.4757.

[25]  F. Feilitzsch,et al.  Low-temperature light detectors: Neganov–Luke amplification and calibration , 2011, 1106.0167.

[26]  M. Deninno,et al.  Sensitivity of CUORE to Neutrinoless Double-Beta Decay , 2011 .

[27]  M. Vignati,et al.  Signal and noise simulation of CUORE bolometric detectors , 2011, 1106.3902.

[28]  J. L. Pérez-Aparicio,et al.  The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report) , 2011, 1106.3630.

[29]  C. Arnaboldi,et al.  A novel technique of particle identification with bolometric detectors , 2011 .

[30]  B. H. LaRoque,et al.  The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of Germanium-76 , 2011, 1307.7777.

[31]  A. Giachero,et al.  130Te neutrinoless double-beta decay with CUORICINO , 2010, 1012.3266.

[32]  C. Arnaboldi,et al.  Characterization of ZnSe scintillating bolometers for Double Beta Decay , 2010, 1006.2721.

[33]  V. Brudanin,et al.  Investigation of double-beta decay with the NEMO-3 detector , 2010, 1002.2862.

[34]  L. Kogler A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment , 2011 .

[35]  P. Rath Uncertainties in nuclear transition matrix elements for neutrinoless ββ decay , 2010 .

[36]  G. Martínez-Pinedo,et al.  Energy density functional study of nuclear matrix elements for neutrinoless ββ decay. , 2010, Physical review letters.

[37]  M. Vignati Model of the response function of large mass bolometric detectors , 2010, 1006.4043.

[38]  J. Beeman,et al.  CdWO4 scintillating bolometer for Double Beta Decay: Light and heat anticorrelation, light yield and quenching factors , 2010, 1005.1239.

[39]  Mario Martínez,et al.  Monte Carlo evaluation of the external gamma, neutron and muon induced background sources in the CUORE experiment , 2010 .

[40]  A. Barabash Precise half-life values for two neutrino double beta decay , 2010, 2009.14451.

[41]  T. T. D. Fatis Cerenkov emission as a positive tag of double beta decays in bolometric experiments , 2010 .

[42]  M. Carrettoni,et al.  Background study and Monte Carlo simulations for large-mass bolometers , 2009 .

[43]  F. Nowacki,et al.  Disassembling the nuclear matrix elements of the neutrinoless ββ decay , 2008, 0801.3760.

[44]  D. Budjáš,et al.  Measurements of extremely low radioactivity levels in stainless steel for GERDA , 2008 .

[45]  M. Clemenza,et al.  Control of bulk and surface radioactivity in bolometric searches for double-beta decay , 2008 .

[46]  D. McCammon,et al.  Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities , 2008 .

[47]  J. Beeman,et al.  Scintillating Bolometers for Double Beta Decay Search , 2008, 0911.1061.

[48]  F. Piquemal The SuperNEMO project , 2006 .

[49]  H. Klapdor-kleingrothaus,et al.  The evidence for the observation of 0ν beta beta decay: The identification of 0ν beta beta events from the full spectra. , 2006 .

[50]  J. Beeman,et al.  Scintillating double-beta-decay bolometers , 2005, nucl-ex/0510074.

[51]  O. Chkvorets,et al.  Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990–2003 , 2004, hep-ph/0404088.

[52]  W. Hampel,et al.  A New $Ge^{76}$ Double Beta Decay Experiment at LNGS: Letter of Intent , 2004 .

[53]  D. Gilbertson,et al.  ARTICLE IN PRESS , 2004 .

[54]  S. Cebrián,et al.  First underground light versus heat discrimination for dark matter search , 2003 .

[55]  F. Vissani,et al.  Addendum to: Neutrino oscillations and signals in and 0 ?2 experiments [Nucl. Phys. B 637 (200 , 2003 .

[56]  E. Collaboration,et al.  EXO: The Enriched Xenon Observatory for Double Beta Decay , 2002, hep-ph/0210186.

[57]  L. Stodolsky,et al.  Limits on WIMP dark matter using sapphire cryogenic detectors , 2002 .

[58]  W. K. Hensley,et al.  The IGEX Ge-76 neutrinoless double beta decay experiment: Prospects for next generation experiments , 2002, hep-ex/0202026.

[59]  H. Klapdor-kleingrothaus,et al.  Latest results from the HEIDELBERG-MOSCOW double beta decay experiment , 2001, hep-ph/0103062.

[60]  E. al.,et al.  Limits on different Majoron decay modes of Mo-100 and Se-82 for neutrinoless double beta decays in the NEMO-3 experiment , 2000, hep-ex/0601021.

[61]  A. Tikhomirov Centrifugal enrichment of stable isotopes and modern physical experiments , 2000 .

[62]  J. Beeman,et al.  CUORE: A cryogenic underground observatory for rare events , 2002, hep-ex/0212053.

[63]  D. Camin,et al.  A scintillating bolometer for experiments on double beta decay , 1998 .

[64]  A. Artyukhov,et al.  Centrifugal enrichment of cadmium isotopes as the basis for further experiments on physics of wak interactions , 1997 .

[65]  N. E. Booth,et al.  LOW-TEMPERATURE PARTICLE DETECTORS , 1996 .

[66]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .