Enargite-luzonite hydrothermal vents in Manus Back-Arc Basin: Submarine analogues of high-sulfidation epithermal mineralization

[1]  D. Connelly,et al.  Talc-dominated seafloor deposits reveal a new class of hydrothermal system , 2015, Nature Communications.

[2]  B. Murton,et al.  Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough , 2015 .

[3]  Y. Fouquet,et al.  Biogeochemical insights into microbe–mineral–fluid interactions in hydrothermal chimneys using enrichment culture , 2015, Extremophiles.

[4]  M. Hannington,et al.  Drilling shallow water massive sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy , 2014 .

[5]  G. Williams-Jones,et al.  High-Sulfidation Epithermal Pyrite-Hosted Au (Ag-Cu) Ore Formation by Condensed Magmatic Vapors on Sangihe Island, Indonesia , 2014 .

[6]  F. Albarède,et al.  Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments , 2014 .

[7]  A. Dufresne,et al.  Microorganisms persist at record depths in the subseafloor of the Canterbury Basin , 2014, The ISME Journal.

[8]  D. Lentz,et al.  SULFIDE COMPOSITION AND ISOTOPIC SIGNATURE OF THE ALTAR Cu-Au DEPOSIT, ARGENTINA: CONSTRAINTS ON THE EVOLUTION OF THE PORPHYRY-EPITHERMAL SYSTEM , 2013 .

[9]  V. Dekov,et al.  Native Cu from the oceanic crust: Isotopic insights into native metal origin , 2013 .

[10]  P. Spry,et al.  Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints , 2013 .

[11]  J. Palandri,et al.  The Butte Magmatic-Hydrothermal System: One Fluid Yields All Alteration and Veins , 2013 .

[12]  S. Petersen,et al.  Inorganic and biogenic As-sulfide precipitation at seafloor hydrothermal fields , 2013 .

[13]  Virginia P. Edgcomb,et al.  Gene expression in the deep biosphere , 2013, Nature.

[14]  F. Albarède,et al.  Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology , 2013 .

[15]  A. Sessions,et al.  MC-ICP-MS measurement of δ34S and ∆33S in small amounts of dissolved sulfate , 2013 .

[16]  M. Wille,et al.  A solvent extraction technique for the isotopic measurement of dissolved copper in seawater. , 2013, Analytica chimica acta.

[17]  J. Charlou,et al.  Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit , 2013 .

[18]  M. Tivey Modeling Chimney Growth and Associated Fluid Flow at Seafloor Hydrothermal Vent Sites , 2013 .

[19]  K. Kyser,et al.  Lithologic controls on mineralization at the Lagunas Norte high-sulfidation epithermal gold deposit, northern Peru , 2013, Mineralium Deposita.

[20]  P. Cartigny,et al.  Determination of multiple sulfur isotopes in glasses: A reappraisal of the MORB δ34S , 2012 .

[21]  F. Marone,et al.  Fossilized fungi in subseafloor Eocene basalts , 2012 .

[22]  J. W. Hedenquist,et al.  TRACE ELEMENT GEOCHEMISTRY OF ENARGITE IN THE MANKAYAN DISTRICT, PHILIPPINES , 2011 .

[23]  J. Richards Magmatic to hydrothermal metal fluxes in convergent and collided margins , 2011 .

[24]  M. Tokeshi Spatial structures of hydrothermal vents and vent-associated megafauna in the back-arc basin system of the Okinawa Trough, western Pacific , 2011 .

[25]  G. Massoth,et al.  Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand , 2011 .

[26]  Jonguk Kim,et al.  Metal-bearing molten sulfur collected from a submarine volcano: Implications for vapor transport of metals in seafloor hydrothermal systems , 2011 .

[27]  T. Pichler,et al.  Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea , 2011 .

[28]  A. Caneschi,et al.  Chemical state of arsenic and copper in enargite: evidences from EPR and X-ray absorption spectroscopies, and SQUID magnetometry , 2011 .

[29]  S. Petersen,et al.  Hydrothermalism in the Tyrrhenian Sea: inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data , 2011 .

[30]  J. Mavrogenes,et al.  The Magnetite Crisis in the Evolution of Arc-related Magmas and the Initial Concentration of Au, Ag and Cu , 2010 .

[31]  R. Duncan,et al.  Evolution of Calc-Alkaline Volcanism and Associated Hydrothermal Gold Deposits at Yanacocha, Peru** , 2010 .

[32]  M. Tivey,et al.  Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins , 2010 .

[33]  À. Canals,et al.  Environment of Ore Deposition in the Cerro Quema Gold-Copper Deposit (Azuero Peninsula, Panama) , 2010 .

[34]  M. Cambon-Bonavita,et al.  Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. , 2010, FEMS microbiology ecology.

[35]  C. German,et al.  Deep-sea mining of seafloor massive sulfides , 2010 .

[36]  T. Pettke,et al.  Direct Analysis of Ore-Precipitating Fluids: Combined IR Microscopy and LA-ICP-MS Study of Fluid Inclusions in Opaque Ore Minerals , 2010 .

[37]  W. McDonough,et al.  Chemical variations and regional diversity observed in MORB , 2010 .

[38]  Sung Hyun Park,et al.  Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea , 2010 .

[39]  R. Rye,et al.  The Sericitic to Advanced Argillic Transition: Stable Isotope and Mineralogical Characteristics from the Hugo Dummett Porphyry Cu-Au Deposit, Oyu Tolgoi District, Mongolia , 2009 .

[40]  P. Muchez,et al.  Cu ISOTOPE RATIO VARIATIONS IN THE DIKULUSHI Cu-Ag DEPOSIT, DRC: OF PRIMARY ORIGIN OR INDUCED BY SUPERGENE REWORKING? , 2009 .

[41]  L. Fontboté,et al.  Cordilleran Epithermal Cu-Zn-Pb-(Au-Ag) Mineralization in the Colquijirca District, Central Peru: Deposit-Scale Mineralogical Patterns , 2009 .

[42]  S. Brantley,et al.  Exploration potential of Cu isotope fractionation in porphyry copper deposits , 2009 .

[43]  P. Vandenkoornhuyse,et al.  Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. , 2009, Environmental microbiology.

[44]  Harald Strauss,et al.  Sulfur cycling at the Mid-Atlantic Ridge: A multiple sulfur isotope approach , 2009 .

[45]  T. Pettke,et al.  Evolution of Magmatic Vapor to Gold-Rich Epithermal Liquid: The Porphyry to Epithermal Transition at Nevados de Famatina, Northwest Argentina , 2009 .

[46]  M. Bar-Matthews,et al.  Fluid speciation controls of low-temperature copper isotope fractionation , 2009 .

[47]  A. Dohnalkova,et al.  Copper isotope fractionation in acid mine drainage , 2009 .

[48]  P. Craddock Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin , 2009 .

[49]  M. Marcus,et al.  Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge , 2009 .

[50]  U. Tsunogai,et al.  Diverse Range of Mineralization Induced by Phase Separation of Hydrothermal Fluid: Case Study of the Yonaguni Knoll IV Hydrothermal Field in the Okinawa Trough Back‐Arc Basin , 2008 .

[51]  L. Ball,et al.  Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS , 2008 .

[52]  L. Fontboté,et al.  Mineral Zoning and Geochemistry of Epithermal Polymetallic Zn-Pb-Ag-Cu-Bi Mineralization at Cerro de Pasco, Peru , 2008 .

[53]  S. Petersen,et al.  Biosignatures present in a hydrothermal massive sulfide from the Mid‐Atlantic Ridge , 2007 .

[54]  Susan M. Huse,et al.  Microbial Population Structures in the Deep Marine Biosphere , 2007, Science.

[55]  M. Bar-Matthews,et al.  Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel) , 2007 .

[56]  Jung Hun Seo,et al.  Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids , 2007 .

[57]  D. Borrok,et al.  Separation of Copper, Iron, and Zinc from Complex Aqueous Solutions for Isotopic Measurement , 2007 .

[58]  Harald Strauss,et al.  The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge. , 2007, FEMS microbiology ecology.

[59]  Ariel D. Anbar,et al.  Metal Stable Isotopes in Paleoceanography , 2007 .

[60]  E. Calvo,et al.  Elderfield, H. (ed.) The Oceans and Marine Geochemistry , 2007 .

[61]  D. Miller,et al.  Leg 193 Synthesis: Anatomy of an Active Felsic-Hosted Hydrothermal System, Eastern Manus Basin, Papua New Guinea , 2007 .

[62]  R. Moritz,et al.  Petrology, geochemistry and U–Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au–Cu Chelopech deposit, Srednogorie zone, Bulgaria , 2007 .

[63]  O. Rouxel,et al.  S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides , 2007 .

[64]  M. Hannington,et al.  Textural and mineralogical changes associated with the incipient hydrothermal alteration of glassy dacite at the submarine PACMANUS hydrothermal system, eastern Manus Basin , 2007 .

[65]  R. Price,et al.  Water-Rock Reaction, Substrate Composition, Magmatic Degassing, and Mixing as Major Factors Controlling Vent Fluid Compositions in Manus Basin Hydrothermal Systems , 2006 .

[66]  F. Albarède,et al.  Cu Zn isotopic variations in the Earth’s mantle , 2006 .

[67]  G. Markl,et al.  Copper isotopes as monitors of redox processes in hydrothermal mineralization , 2006 .

[68]  P. Laznicka Giant Metallic Deposits: Future Sources of Industrial Metals , 2006 .

[69]  O. Matsubaya,et al.  Hydrogen, Oxygen and Sulfur Isotope Studies of Seafloor Hydrothermal System at the Desmos Caldera, Manus Back‐arc Basin, Papua New Guinea: An Analogue of Terrestrial Acid Hot Crater‐lake , 2006 .

[70]  M. Tivey,et al.  Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9 degrees N, East Pacific Rise). , 2006, Environmental microbiology.

[71]  A. Boyce,et al.  The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides , 2006 .

[72]  R. Moritz,et al.  Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu–Au epithermal Chelopech deposit, Srednogorie belt, Bulgaria , 2006 .

[73]  T. Oomori,et al.  Metallic mineralization associated with pillow basalts in the Yaeyama Central Graben, Southern Okinawa Trough, Japan , 2006 .

[74]  Yueh-Yuan Tu,et al.  Tide-influenced acidic hydrothermal system offshore NE Taiwan , 2005 .

[75]  S. Brantley,et al.  Cu isotopic fractionation in the supergene environment with and without bacteria , 2005 .

[76]  E. Baker,et al.  Evolution of a Submarine Magmatic-Hydrothermal System: Brothers Volcano, Southern Kermadec Arc, New Zealand , 2005 .

[77]  D. Prieur,et al.  Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. , 2005, Environmental microbiology.

[78]  A. Boyce,et al.  The development of volcanic hosted massive sulfide and barite–gold orebodies on Wetar Island, Indonesia , 2005 .

[79]  H. Ueno,et al.  Ore and gangue minerals of seafloor hydrothermal deposits in the Mariana Trough , 2005 .

[80]  Jonguk Kim,et al.  S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: Evaluation of magmatic contribution to hydrothermal system , 2004 .

[81]  L. Bailly,et al.  GENESIS OF HIGH-SULFIDATION VINCIENNITE-BEARING Cu–As–Sn (, 2004 .

[82]  I. Butler,et al.  Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS , 2004 .

[83]  C. Little,et al.  Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents , 2004 .

[84]  K. Edwards,et al.  Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea , 2004 .

[85]  Y. Fouquet,et al.  Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes , 2004 .

[86]  Y. Fouquet,et al.  Copper Isotope Systematics of the Lucky Strike, Rainbow, and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge , 2004 .

[87]  M. Hannington,et al.  Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait, Antarctica , 2004 .

[88]  S. Roberts,et al.  Fluid inclusion evidence for subsurface phase separation and variable fluid mixing regimes beneath the deep-sea PACMANUS hydrothermal field, Manus Basin back arc rift, Papua New Guinea , 2004 .

[89]  V. Dekov,et al.  Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research , 2004 .

[90]  S. Humphris,et al.  Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea , 2003 .

[91]  E. M. Klein,et al.  3.13 – Geochemistry of the Igneous Oceanic Crust , 2003 .

[92]  M. V. Kranendonk,et al.  Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils , 2003, Science.

[93]  K. Edwards,et al.  Geomicrobiology of deep‐sea deposits: estimating community diversity from low‐temperature seafloor rocks and minerals , 2003 .

[94]  Detlef Günther,et al.  Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry , 2003 .

[95]  A. Boyce,et al.  Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin: The Sr and S isotope evidence , 2003 .

[96]  A. Koschinsky,et al.  Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium , 2003 .

[97]  Ulrich Weser,et al.  Mass fractionation processes of transition metal isotopes , 2002 .

[98]  A. Caneschi,et al.  CRYSTAL CHEMISTRY OF TETRAHEDRITE SOLID-SOLUTION: EPR AND MAGNETIC INVESTIGATIONS , 2002 .

[99]  W. Ridley,et al.  Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique , 2002 .

[100]  E. Oelkers,et al.  The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids , 2002 .

[101]  S. Scott,et al.  GEOCHEMISTRY AND MINERALOGY OF GOLD-RICH HYDROTHERMAL PRECIPITATES FROM THE EASTERN MANUS BASIN, PAPUA NEW GUINEA , 2001 .

[102]  M. Einaudi,et al.  Porphyry-Epithermal Transition: Maricunga Belt, Northern Chile , 2001 .

[103]  P. Halbach,et al.  Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan) , 2001 .

[104]  L. B. Gustafson,et al.  Geology of the Chuquicamata Mine: A Progress Report , 2001 .

[105]  J. Trefry,et al.  Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids , 2000 .

[106]  B. Rasmussen,et al.  Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit , 2000, Nature.

[107]  Francis Albarède,et al.  Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry , 1999 .

[108]  Fiske,et al.  A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera , 1999, Science.

[109]  I. Butler,et al.  Mineralogy, sulphur isotope geochemistry and the development of sulphide structures at the Broken Spur hydrothermal vent site, 29°10’N, Mid-Atlantic Ridge , 1998, Journal of the Geological Society.

[110]  J. W. Hedenquist,et al.  Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines , 1998 .

[111]  D. Teagle,et al.  Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy , 1998 .

[112]  P. Buseck,et al.  Relationships between microstructure and composition in enargite and luzonite , 1998 .

[113]  S. Roberts,et al.  Self-organization of submarine hydrothermal siliceous deposits: Evidence from the TAG hydrothermal mound, 26°N Mid-Atlantic Ridge , 1998 .

[114]  M. Hannington,et al.  Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems , 1998 .

[115]  Delaney,et al.  Biological and geological dynamics over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory , 1997 .

[116]  J. Auzende,et al.  Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea , 1997 .

[117]  Y. Fouquet,et al.  Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise , 1996 .

[118]  B. Taylor,et al.  Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin , 1996 .

[119]  H. Newsom,et al.  The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron , 1996 .

[120]  M. Hannington,et al.  High sulfidation deposits in the volcanogenic massive sulfide environment , 1996 .

[121]  Mark D. Hannington,et al.  Polymetallic massive sulfides at the modern seafloor A review , 1995 .

[122]  A. Campbell,et al.  Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation CuAu deposit , 1995 .

[123]  F. Stuart,et al.  Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides , 1994 .

[124]  J. Lowenstern,et al.  The role of magmas in the formation of hydrothermal ore deposits , 1994, Nature.

[125]  D. Kadko,et al.  Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge , 1994 .

[126]  R. Binns,et al.  Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea , 1993 .

[127]  J. Auzende,et al.  The White Lady hydrothermal field, North Fiji back-arc basin, Southwest Pacific , 1993 .

[128]  P. Herzig,et al.  Metallogenesis in back-arc environments; the Lau Basin example , 1993 .

[129]  P. Gente,et al.  Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23 degrees N) , 1993 .

[130]  P. Halbach,et al.  Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan , 1993 .

[131]  R. Pattrick,et al.  Oxidation state and electronic configuration determination of copper in tetrahedrite group minerals by L-edge X-ray absorption spectroscopy , 1993 .

[132]  W. Shanks,et al.  Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough , 1993 .

[133]  J. Delaney,et al.  The heat and fluid transfer associated with the flanges on hydrothermal venting structures , 1992 .

[134]  M. Hannington,et al.  Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges , 1991 .

[135]  E. Nakamura,et al.  S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18°N , 1990 .

[136]  S. Jankovic Types of copper deposits related to volcanic environment in the Bor district, Yugoslavia , 1990 .

[137]  R. Seifert,et al.  Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin , 1989, Nature.

[138]  G. Auclair,et al.  Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise , 1988 .

[139]  W. Shanks,et al.  The composition of massive sulfide deposits from the sediment-covered floor of Escanaba Trough, Gorda Ridge; implications for depositional processes , 1988 .

[140]  H. Ohmoto,et al.  Sulfide-sulfate chimneys on the East Pacific Rise, 11 degrees and 13 degrees N latitudes; Part II, Sulfur isotopes , 1988 .

[141]  M. Hannington,et al.  Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge , 1988 .

[142]  P. Stoffers,et al.  Hydrothermal silica chimney fields in the Galapagos Spreading Center at 86°W , 1988 .

[143]  W. Shanks,et al.  Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific Rise: Hydrothermal sulfur sources and disequilibrium sulfate reduction , 1988 .

[144]  W. Seyfried,et al.  Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: Sodium metasomatism and seawater sulfate reduction , 1987 .

[145]  D. O. Hayba,et al.  Comparative anatomy of volcanic-hosted epithermal deposits; acid-sulfate and adularia-sericite types , 1987 .

[146]  R. Zierenberg,et al.  Massive sulfide deposits at 21°N, East Pacific Rise: Chemical composition, stable isotopes, and phase equilibria , 1984 .

[147]  D. Clague,et al.  Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge , 1984 .

[148]  R. Haymon,et al.  Sulfur isotope systematics at the 21°N site, East Pacific Rise , 1983 .

[149]  R. Sillitoe Enargite-bearing massive sulfide deposits high in porphyry copper systems , 1983 .

[150]  M. Coleman,et al.  Origin of sulphur and geothermometry of hydrothermal sulphides from the Galapagos Rift, 86 °W , 1982, Nature.

[151]  S. Sheppard,et al.  East Pacific Rise at latitude 21°N: isotopic composition and origin of the hydrothermal sulphur , 1981 .

[152]  R. Haymon,et al.  Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis , 1981 .

[153]  B. Clark,et al.  The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude , 1981 .

[154]  R. Hékinian,et al.  Sulfide Deposits from the East Pacific Rise Near 21�N , 1980, Science.

[155]  B. Taylor Bismarck Sea: Evolution of a back-arc basin , 1979 .

[156]  E. Makovicky,et al.  Studies of the Sulfosalts of Copper III; Phases and Phase Relations in the System Cu-Sb-S , 1971 .

[157]  E. S. Cheney,et al.  Sulfur isotopic reconnaissance of Butte, Montana , 1971 .

[158]  G. Adiwidjaja,et al.  Strukturverfeinerung von Enargit, Cu3AsS4 , 1970 .

[159]  Jung Hun Seo,et al.  Zoned Base Metal Mineralization in a Porphyry System: Origin and Evolution of Mineralizing Fluids in the Morococha District, Peru , 2015 .

[160]  David Beaudoin,et al.  Marine subsurface eukaryotes: the fungal majority. , 2011, Environmental microbiology.

[161]  R. Sillitoe Porphyry Copper Systems , 2010 .

[162]  M. Reed,et al.  Fluid inclusion evidence for the formation of main stage polymetallic base-metal veins, Butte, Montana, USA , 2008 .

[163]  C. Heinrich,et al.  SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions , 2008 .

[164]  W. G. Wright,et al.  Major Styles of Mineralization and Hydrothermal Alteration and Related Solid- and Aqueous-Phase Geochemical Signatures , 2007 .

[165]  R. Juárez Shallow polymetallic and precious metal mineralization associated with a Miocene diatreme-dome complex : the Colquijirca district in the Peruvian Andes , 2007 .

[166]  R. Binns Data Report: Geochemistry of Massive and Semimassive Sulfides from Site 1189, Ocean Drilling Program Leg 193 , 2006 .

[167]  M. Tivey,et al.  Manus 2006 : hydrothermal systems in the Eastern Manus Basin: fluid chemistry and magnetic structure as guides to subseafloor processes , 2006 .

[168]  T. Shibata,et al.  COPPER-RICH SULFIDE DEPOSIT NEAR 23 ° N , MID-ATLANTIC RIDGE : CHEMICAL COMPOSITION , MINERAL CHEMISTRY , AND SULFUR ISOTOPES , 2006 .

[169]  S. Simmons,et al.  Geological characteristics of epithermal precious and base metal deposits , 2005 .

[170]  A. Pfitzner,et al.  The system Cu3AsS4–Cu3SbS4 and investigations on normal tetrahedral structures , 2004 .

[171]  M. Einaudi,et al.  Sulfidation State of Fluids in Active and Extinct Hydrothermal Systems: Transitions from Porphyry to Epithermal Environments , 2003 .

[172]  J. Sinton,et al.  Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea , 2003 .

[173]  W. Shanks Stable Isotopes in Seafloor Hydrothermal Systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes , 2001 .

[174]  R. Binns,et al.  Gold Content of Eastern Manus Basin Volcanic Rocks: Implications for Enrichment in Associated Hydrothermal Precipitates , 2001 .

[175]  M. Hannington,et al.  Volcanogenic gold in the massive sulfide environment , 1999 .

[176]  M. Hannington,et al.  Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N , 1998 .

[177]  J. Gemmell,et al.  Detailed sulfur-isotope investigation of the TAG hydrothermal mound and stockwork zone, 26 degrees N, Mid-Atlantic Ridge , 1998 .

[178]  T. Yamanaka Geochemical Studies of magmatic hydrothermal activity in the DESMOS Caldron, Manus back arc basin , 1997 .

[179]  R. Frischknecht,et al.  Capabilities of an Argon Fluoride 193 nm Excimer Laser for LaserAblation Inductively Coupled Plasma Mass Spectometry Microanalysis ofGeological Materials , 1997 .

[180]  J. Gemmell,et al.  DETAILED SULFUR-ISOTOPE INVESTIGATION OF THE TAG HYDROTHERMAL MOUND AND STOCKWORK ZONE , 26 ° N , MID-ATLANTIC RIDGE , 1997 .

[181]  R. Binns,et al.  Hydrothermal processes and contrasting styles of mineralization in the western Woodlark and eastern Manus basins of the western Pacific , 1995, Geological Society, London, Special Publications.

[182]  F. Stuart,et al.  Noble gas isotopes in 25 000 years of hydrothermal fluids from 13°N on the East Pacific Rise , 1995, Geological Society, London, Special Publications.

[183]  B. V. Malin,et al.  Detailed geological studies of hydrothermal fields in the North Atlantic , 1995, Geological Society, London, Special Publications.

[184]  A. Fallick,et al.  Mineralogy and sulphur isotope characteristics of a massive sulphide boulder, Galapagos Rift, 85°55′W , 1995, Geological Society, London, Special Publications.

[185]  B. Murton,et al.  Mineralogy and sulphur isotope geochemistry of the Broken Spur sulphides, 29°N, Mid-Atlantic Ridge , 1995, Geological Society, London, Special Publications.

[186]  J. Staude Epithermal mineralization in the Sierra Madre Occidental, and the metallogeny of northwestern Mexico. , 1995 .

[187]  V. Bendel Cadre géologique et composition des minéralisations hydrothermales en contexte arrière-arc : exemple de la dorsale du bassin nord fidjien (sud ouest Pacifique) , 1993 .

[188]  M. Hannington,et al.  Auriferous hydrothermal precipitates on the modern seafloor , 1991 .

[189]  T. Shibata,et al.  13. COPPER-RICH SULFIDE DEPOSIT NEAR 23°N, MID-ATLANTIC RIDGE: CHEMICAL COMPOSITION, MINERAL CHEMISTRY, AND SULFUR ISOTOPES1 , 1990 .

[190]  E. Oudin Hydrothermal sulfide deposits of the East Pacific Rise(21゜N). Part I : Descriptive mineralogy. , 1983 .