Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities

[1]  A. Hoskins,et al.  SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast , 2017, Nucleic acids research.

[2]  C. Lima,et al.  Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. , 2016, Molecular cell.

[3]  Chuangye Yan,et al.  Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution , 2016, Science.

[4]  Yigong Shi,et al.  Structure of a yeast activated spliceosome at 3.5 Å resolution , 2016, Science.

[5]  John D. Scott,et al.  Malonate in the nucleotide-binding site traps human AKAP18 gamma / delta in a novel conformational state. , 2016 .

[6]  John D. Scott,et al.  Malonate in the nucleotide-binding site traps human AKAP18γ/δ in a novel conformational state. , 2016, Acta crystallographica. Section F, Structural biology communications.

[7]  C. Oubridge,et al.  CryoEM structure of the spliceosome immediately after branching , 2016, Nature.

[8]  R. Silverman,et al.  Crystal structure of the mouse hepatitis virus ns2 phosphodiesterase domain that antagonizes RNase L activation. , 2016, The Journal of general virology.

[9]  Yigong Shi,et al.  The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis , 2016, Science.

[10]  C. Oubridge,et al.  CryoEM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution , 2016, Nature.

[11]  S. Butcher,et al.  Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly , 2015, Nucleic acids research.

[12]  Yigong Shi,et al.  Structure of a yeast spliceosome at 3.6-angstrom resolution , 2015, Science.

[13]  C. Soneson,et al.  Human Mpn1 promotes post‐transcriptional processing and stability of U6atac , 2015, FEBS letters.

[14]  M. Jinek,et al.  Crystal structure of the C‐terminal 2′,5′‐phosphodiesterase domain of group a rotavirus protein VP3 , 2015, Proteins.

[15]  A. Jacewicz,et al.  Structure and mechanism of E. coli RNA 2′,3′-cyclic phosphodiesterase , 2014, RNA.

[16]  S. Butcher,et al.  Core structure of the U6 small nuclear ribonucleoprotein at 1.7-Å resolution , 2014, Nature Structural & Molecular Biology.

[17]  Yigong Shi,et al.  Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA , 2013, Nature.

[18]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[19]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[20]  S. Shuman,et al.  A kinetic framework for tRNA ligase and enforcement of a 2'-phosphate requirement for ligation highlights the design logic of an RNA repair machine. , 2013, RNA.

[21]  P. Campbell,et al.  Aberrant 3' oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia. , 2013, Blood.

[22]  C. Soneson,et al.  Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3'-to-5' RNA exonuclease processing U6 small nuclear RNA. , 2012, Cell reports.

[23]  K. Ginalski,et al.  C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3' end modification. , 2012, Genes & development.

[24]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[25]  Huijong Han,et al.  Myelin 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase: Active-Site Ligand Binding and Molecular Conformation , 2012, PloS one.

[26]  Christopher J. Herbert,et al.  An in silico approach combined with in vivo experiments enables the identification of a new protein whose overexpression can compensate for specific respiratory defects in Saccharomyces cerevisiae , 2011, BMC Systems Biology.

[27]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[28]  T. Vulliamy,et al.  Mutations in C16orf57 and normal-length telomeres unify a subset of patients with dyskeratosis congenita, poikiloderma with neutropenia and Rothmund–Thomson syndrome , 2010, Human molecular genetics.

[29]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[30]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[31]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[32]  R. Lührmann,et al.  3'-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. , 2008, RNA.

[33]  D. Barford,et al.  Akap18 Contains a Phosphoesterase Domain that Binds AMP , 2008 .

[34]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[35]  H. Urlaub,et al.  Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. , 2006, RNA.

[36]  Y. Yuan,et al.  Structural basis for recognition and sequestration of UUU(OH) 3' temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen. , 2006, Molecular cell.

[37]  T. Tahirov,et al.  Structure of a putative 2'-5' RNA ligase from Pyrococcus horikoshii. , 2005, Acta crystallographica. Section D, Biological crystallography.

[38]  D. Lilley,et al.  Nucleobase participation in ribozyme catalysis. , 2005, Journal of the American Chemical Society.

[39]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[40]  S. Yokoyama,et al.  Crystal structure of the 2'-5' RNA ligase from Thermus thermophilus HB8. , 2003, Journal of molecular biology.

[41]  Wendell A. Lim,et al.  The Structure and Function of Proline Recognition Domains , 2003, Science's STKE.

[42]  Raja Mazumder,et al.  Detection of novel members, structure–function analysis and evolutionary classification of the 2H phosphoesterase superfamily , 2002, Nucleic acids research.

[43]  C. Guthrie,et al.  A conserved Lsm-interaction motif in Prp24 required for efficient U4/U6 di-snRNP formation. , 2002, RNA.

[44]  S. Wolin,et al.  Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein. , 2001, Genetics.

[45]  R. Maraia,et al.  Transcription Termination by RNA Polymerase III in Fission Yeast , 2000, The Journal of Biological Chemistry.

[46]  J. Butler,et al.  A Nuclear 3′-5′ Exonuclease Involved in mRNA Degradation Interacts with Poly(A) Polymerase and the hnRNA Protein Npl3p , 2000, Molecular and Cellular Biology.

[47]  M. Wilm,et al.  A doughnut‐shaped heteromer of human Sm‐like proteins binds to the 3′‐end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro , 1999, The EMBO journal.

[48]  S. Wolin,et al.  A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts , 1998, The EMBO journal.

[49]  Bernd-Joachim Benecke,et al.  A highly specific terminal uridylyl transferase modifies the 3'-end of U6 small nuclear RNA , 1998, Nucleic Acids Res..

[50]  M. Terns,et al.  3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei , 1992, Molecular and cellular biology.

[51]  E. Lund,et al.  Cyclic 2',3'-phosphates and nontemplated nucleotides at the 3' end of spliceosomal U6 small nuclear RNA's. , 1992, Science.

[52]  A. Sentenac,et al.  The U6 gene of Saccharomyces cerevisiae is transcribed by RNA polymerase C (III) in vivo and in vitro. , 1990, The EMBO journal.

[53]  Christine Guthrie,et al.  Spliceosomal RNA U6 is remarkably conserved from yeast to mammals , 1988, Nature.

[54]  D. Wright,et al.  The capped U6 small nuclear RNA is transcribed by RNA polymerase III. , 1987, The Journal of biological chemistry.

[55]  R. Maser,et al.  U6 small nuclear RNA is transcribed by RNA polymerase III. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Steitz,et al.  Association of the lupus antigen La with a subset of U6 snRNA molecules. , 1985, Nucleic acids research.

[57]  J. E. Stefano Purified lupus antigen la recognizes an oligouridylate stretch common to the 3′ termini of RNA polymerase III transcripts , 1984, Cell.

[58]  Smith Ic,et al.  A 13 C and 1 H nuclear magnetic resonance study of the conformations of 2',3'-cyclic nucleotides. , 1973 .

[59]  I. Smith,et al.  A nuclear magnetic resonance study of the influence of aqueous sodium perchlorate and temperature on the solution conformations of uracil nucleosides and nucleotides. , 1972, Biochemistry.

[60]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[61]  Thomas C Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution and density modification. , 2003, Methods in enzymology.

[62]  Burkhard Rost,et al.  The PredictProtein server , 2003, Nucleic Acids Res..

[63]  R. D. Gietz,et al.  Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. , 2002, Methods in enzymology.

[64]  T. Pederson,et al.  U 6 small nuclear RNA is transcribed by RNA polymerase III ( cloned human U 6 gene / " TATA box " / intragenic promoter / a-amanitin / La antigen ) , 1999 .

[65]  I. Smith,et al.  A 13 C and 1 H nuclear magnetic resonance study of the conformations of 2',3'-cyclic nucleotides. , 1973, Journal of the American Chemical Society.