Deep Photon Mapping

Recently, deep learning-based denoising approaches have led to dramatic improvements in low sample-count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high-quality reconstructions. In this paper, we develop the first deep learning-based method for particle-based rendering, and specifically focus on photon density estimation, the core of all particle-based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per-photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per-photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high-quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods.

[1]  Anton Kaplanyan,et al.  Adaptive progressive photon mapping , 2013, TOGS.

[2]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[3]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[4]  Kenny Erleben,et al.  Photon differentials , 2007, GRAPHITE '07.

[5]  Mark Meyer,et al.  Denoising with kernel prediction and asymmetric loss functions , 2018, ACM Trans. Graph..

[6]  Timo Aila,et al.  Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder , 2017, ACM Trans. Graph..

[7]  Ben Spencer,et al.  Into the Blue: Better Caustics through Photon Relaxation , 2009, Comput. Graph. Forum.

[8]  Justin Talbot,et al.  Energy redistribution path tracing , 2005, ACM Trans. Graph..

[9]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[10]  Ravi Ramamoorthi,et al.  Multiple Axis‐Aligned Filters for Rendering of Combined Distribution Effects , 2017, Comput. Graph. Forum.

[11]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[12]  Pradeep Sen,et al.  A machine learning approach for filtering Monte Carlo noise , 2015, ACM Trans. Graph..

[13]  Jaakko Lehtinen,et al.  Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering , 2015, Comput. Graph. Forum.

[14]  Frédo Durand,et al.  Frequency analysis and sheared reconstruction for rendering motion blur , 2009, ACM Trans. Graph..

[15]  Kalyan Sunkavalli,et al.  Deep image-based relighting from optimal sparse samples , 2018, ACM Trans. Graph..

[16]  Kalyan Sunkavalli,et al.  Deep view synthesis from sparse photometric images , 2019, ACM Trans. Graph..

[17]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[18]  Wenzel Jakob,et al.  Progressive Expectation‐Maximization for Hierarchical Volumetric Photon Mapping , 2011, EGSR '11.

[19]  Jon Sporring,et al.  Diffusion Based Photon Mapping , 2008, Comput. Graph. Forum.

[20]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[21]  Eric P. Lafortune,et al.  Monte Carlo light tracing with direct computation of pixel intensities , 1993 .

[22]  Toshiya Hachisuka,et al.  Stochastic progressive photon mapping , 2009, ACM Trans. Graph..

[23]  Mark Meyer,et al.  Kernel-predicting convolutional networks for denoising Monte Carlo renderings , 2017, ACM Trans. Graph..

[24]  H. Jensen,et al.  Progressive photon mapping , 2008, SIGGRAPH 2008.

[25]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[26]  Niels Jørgen Christensen,et al.  Photon maps in bidirectional Monte Carlo ray tracing of complex objects , 1995, Comput. Graph..

[27]  R. Ramamoorthi,et al.  Adaptive wavelet rendering , 2009, SIGGRAPH 2009.

[28]  Toshiya Hachisuka,et al.  A progressive error estimation framework for photon density estimation , 2010, ACM Trans. Graph..

[29]  Frédo Durand,et al.  Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects , 2015, ACM Trans. Graph..

[30]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[31]  Jaakko Lehtinen,et al.  Sample-based Monte Carlo denoising using a kernel-splatting network , 2019, ACM Trans. Graph..

[32]  Ravi Ramamoorthi,et al.  Deep high dynamic range imaging of dynamic scenes , 2017, ACM Trans. Graph..

[33]  Donald P. Greenberg,et al.  Global illumination using local linear density estimation , 1997, TOGS.

[34]  J. Vorba Bidirectional Photon Mapping , 2011 .

[35]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[36]  Rui Wang,et al.  Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation , 2019, ACM Trans. Graph..

[37]  Toshiya Hachisuka,et al.  Robust adaptive photon tracing using photon path visibility , 2011, TOGS.

[38]  Philipp Slusallek,et al.  Bidirectional light transport with vertex merging , 2011, SA '11.

[39]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[40]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Ben Spencer,et al.  Photon Parameterisation for Robust Relaxation Constraints , 2013, Comput. Graph. Forum.

[42]  Ben Spencer,et al.  Progressive photon relaxation , 2013, ACM Trans. Graph..

[43]  Xiangxu Meng,et al.  Adaptive Photon Mapping Based on Gradient , 2016, Journal of Computer Science and Technology.

[44]  Matthias Zwicker,et al.  Robust Denoising using Feature and Color Information , 2013, Comput. Graph. Forum.

[45]  Matthias Zwicker,et al.  Progressive photon mapping: A probabilistic approach , 2011, TOGS.

[46]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.