Quantum many-body models with cold atoms coupled to photonic crystals

Using cold atoms to simulate strongly interacting quantum systems is an exciting frontier of physics. However, because atoms are nominally neutral point particles, this limits the types of interaction that can be produced. We propose to use the powerful new platform of cold atoms trapped near nanophotonic systems to extend these limits, enabling a novel quantum material in which atomic spin degrees of freedom, motion and photons strongly couple over long distances. In this system, an atom trapped near a photonic crystal seeds a localized, tunable cavity mode around the atomic position. We find that this effective cavity facilitates interactions with other atoms within the cavity length, in a way that can be made robust against realistic imperfections. Finally, we show that such phenomena should be accessible using one-dimensional photonic crystal waveguides in which coupling to atoms has already been experimentally demonstrated.

[1]  J. Feist,et al.  Coupling a Single Trapped Atom to a Nanoscale Optical Cavity , 2013, Science.

[2]  K. Mølmer,et al.  Atom-atom interaction in strongly modified reservoirs , 1997 .

[3]  Andrew D. Greentree,et al.  Quantum phase transitions of light , 2006, cond-mat/0609050.

[4]  Seo Ho Youn,et al.  Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.

[5]  Costas M. Soukoulis,et al.  Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials , 2008 .

[6]  S. John,et al.  Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. , 1990, Physical review letters.

[7]  J. Ye,et al.  A High Phase-Space-Density Gas of Polar Molecules , 2008, Science.

[8]  D. Basko,et al.  On the problem of many-body localization , 2006, cond-mat/0602510.

[9]  P. Hauke,et al.  Spread of correlations in long-range interacting quantum systems. , 2013, Physical review letters.

[10]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[11]  H. Kimble,et al.  Atom–light interactions in photonic crystals , 2013, Nature Communications.

[12]  M. Dalmonte,et al.  Cluster Luttinger liquids of Rydberg-dressed atoms in optical lattices. , 2013, Physical review letters.

[13]  P. Domokos,et al.  Collective cooling and self-organization of atoms in a cavity , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[14]  M. B. Plenio,et al.  Cavity-loss-induced generation of entangled atoms , 1999 .

[15]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[16]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[17]  J. Hubbard On the Interaction of Electrons in Metals , 1955 .

[18]  Dirk-Gunnar Welsch,et al.  Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings , 2002 .

[19]  Alexey V. Gorshkov,et al.  Attractive photons in a quantum nonlinear medium , 2013, Nature.

[20]  K. Hakuta,et al.  Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique. , 2012, Optics express.

[21]  D. E. Chang,et al.  Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals , 2014, Nature Photonics.

[22]  A. Griesmaier,et al.  Bose-Einstein condensation of chromium. , 2005, Physical review letters.

[23]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[24]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[25]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[26]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[27]  Zhihao Lan,et al.  Quantum simulations with ultracold quantum gases , 2012 .

[28]  F. Fressin,et al.  Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.

[29]  John,et al.  Quantum optics of localized light in a photonic band gap. , 1991, Physical review. B, Condensed matter.

[30]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[31]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[32]  Gershon Kurizki,et al.  Nonradiative interaction and entanglement between distant atoms , 2012, 1205.3064.

[33]  S. Bose,et al.  Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays , 2006, quant-ph/0606159.

[34]  Kampf,et al.  Supersolids in the Bose-Hubbard Hamiltonian. , 1994, Physical review letters.

[35]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[36]  Fundamental quantum optics in structured reservoirs , 2000 .

[37]  H. Kimble,et al.  Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.

[38]  Kurizki Two-atom resonant radiative coupling in photonic band structures. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[39]  V. Vuletić,et al.  Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. , 2003, Physical review letters.

[40]  S. Dawkins,et al.  Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. , 2009, Physical review letters.

[41]  H. Kimble,et al.  Trapped atoms in one-dimensional photonic crystals , 2013, CLEO: 2013.

[42]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[43]  CNRS,et al.  Statistical mechanics and dynamics of solvable models with long-range interactions , 2009, 0907.0323.

[44]  K. Busch,et al.  Few-photon transport in low-dimensional systems , 2011 .

[45]  Oskar Painter,et al.  Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions , 2014 .

[46]  G. Kurizki,et al.  Non-additivity in laser-illuminated many-atom systems. , 2013, Optics letters.

[47]  Serge Haroche,et al.  Superradiance: An essay on the theory of collective spontaneous emission , 1982 .

[48]  H. Kimble,et al.  Cavity QED with atomic mirrors , 2012, 1201.0643.

[49]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.