Computational recovery of time-dependent volatility from integral observations in option pricing

Abstract In this paper robust algorithms for numerical identification of time dependent volatility by integral observations of one- and two-asset Black–Scholes models are developed. An average linearization in time of diffusion terms of the discrete initial boundary value problems is used. Then, a decomposition with respect to the volatility of the approximate solution is applied so that the transition to a new time layer is carried out by solving standard discrete elliptic problems. Numerical experiments using simulated as well as real data confirm the effectiveness of the present approach.

[1]  Stability of central finite difference schemes on non-uniform grids for the Black--Scholes equation , 2009 .

[2]  Liu Yang,et al.  An inverse problem of determining the implied volatility in option pricing , 2008 .

[3]  A. A. Samarskii,et al.  Numerical Methods for Solving Inverse Problems of Mathematical Physics , 2007 .

[4]  T. Coleman,et al.  Reconstructing the Unknown Local Volatility Function , 1999 .

[5]  Liu Yang,et al.  An inverse problem arisen in the zero-coupon bond pricing ☆ , 2010 .

[6]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[7]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[8]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[9]  Riccardo Rebonato Volatility and Correlation , 2004 .

[10]  Matthias Ehrhardt,et al.  A FAST, STABLE AND ACCURATE NUMERICAL METHOD FOR THE BLACK–SCHOLES EQUATION OF AMERICAN OPTIONS , 2008 .

[11]  Y. Kwok Mathematical models of financial derivatives , 2008 .

[12]  Slavi G. Georgiev,et al.  Numerical solution of the right boundary condition inverse problem for the Black–Scholes equation , 2017 .

[13]  Xiaonan Wu,et al.  A Fast Numerical Method for the Black-Scholes Equation of American Options , 2003, SIAM J. Numer. Anal..

[14]  M. V. Klibanov,et al.  Numerical identification of the leading coefficient of a parabolic equation , 2016 .

[15]  Stéphane Crépey,et al.  Calibration of the Local Volatility in a Generalized Black-Scholes Model Using Tikhonov Regularization , 2003, SIAM J. Math. Anal..

[16]  Marco Avellaneda,et al.  Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .

[17]  Elton P. Hsu,et al.  ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS , 2009 .

[18]  Lishang Jiang Mathematical Modeling and Methods of Option Pricing , 2005 .

[19]  Jiang Lishang,et al.  Identifying the volatility of underlying assets from option prices , 2001 .

[20]  Giuseppe Orlando,et al.  A review on implied volatility calculation , 2017, J. Comput. Appl. Math..

[21]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[22]  A. Samarskii The Theory of Difference Schemes , 2001 .

[23]  V. Isakov Appendix -- Function Spaces , 2017 .

[24]  A new well-posed algorithm to recover implied local volatility , 2003 .

[25]  Endre Süli,et al.  Computation of Deterministic Volatility Surfaces , 1998 .

[26]  Victor Isakov,et al.  The inverse problem of option pricing , 1997 .

[27]  V. Isakov,et al.  TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .

[28]  Peter A. Forsyth,et al.  Analysis of the stability of the linear boundary condition for the Black–Scholes equation , 2004 .

[29]  Johan Tysk,et al.  Bubbles, convexity and the Black–Scholes equation , 2009, 0908.4468.

[30]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[31]  D. Ševčovič Analytical and Numerical Methods for Pricing Financial Derivatives , 2011 .

[32]  Radoslav L. Valkov Fitted finite volume method for a generalized Black–Scholes equation transformed on finite interval , 2013, Numerical Algorithms.

[33]  V. Isakov Recovery of time dependent volatility coefficient by linearization , 2013, 1307.4781.

[34]  Victor Isakov,et al.  Recovery of volatility coefficient by linearization , 2002 .