Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles

[1]  C. Machain-Williams,et al.  A survey of zoonotic pathogens carried by house mouse and black rat populations in Yucatan, Mexico , 2017, Epidemiology and Infection.

[2]  S. Klimpel,et al.  Bacterial diversity of cosmopolitan Culex pipiens and invasive Aedes japonicus from Germany , 2017, Parasitology Research.

[3]  J. Neufeld,et al.  Temporal Variations of Microbiota Associated with the Immature Stages of Two Florida Culex Mosquito Vectors , 2017, Microbial Ecology.

[4]  Juan Pablo Aparicio,et al.  Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans , 2017, PLoS Comput. Biol..

[5]  Amnon Amir,et al.  Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus , 2017, Front. Microbiol..

[6]  K. Murray,et al.  Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. , 2017, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[7]  E. McGraw,et al.  The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus , 2017, PLoS neglected tropical diseases.

[8]  N. Ajami,et al.  The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum , 2017, mBio.

[9]  K. Haag,et al.  Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal , 2016, Parasites & Vectors.

[10]  Mark R. Brown,et al.  Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats , 2016, Molecular ecology.

[11]  R. Maciel-de-Freitas,et al.  Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan , 2016, Memorias do Instituto Oswaldo Cruz.

[12]  C. Barnabé,et al.  Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory , 2016, PLoS neglected tropical diseases.

[13]  Luis F. Solorzano,et al.  Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador. , 2016, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[14]  R. López-Vélez,et al.  Prevalence of Trypanosoma cruzi's Discrete Typing Units in a cohort of Latin American migrants in Spain. , 2016, Acta Tropica.

[15]  M. N. Garcia,et al.  Erratum , 2016, Journal of Medical Entomology.

[16]  C. Barnabé,et al.  Blood meal sources of wild and domestic Triatoma infestans (Hemiptera: Reduviidae) in Bolivia: connectivity between cycles of transmission of Trypanosoma cruzi , 2016, Parasites & Vectors.

[17]  A. Tanaka,et al.  A new antimicrobial protein from the anterior midgut of Triatoma infestans mediates Trypanosoma cruzi establishment by controlling the microbiota. , 2016, Biochimie.

[18]  M. Harry,et al.  Molecular Individual-Based Approach on Triatoma brasiliensis: Inferences on Triatomine Foci, Trypanosoma cruzi Natural Infection Prevalence, Parasite Diversity and Feeding Sources , 2016, PLoS neglected tropical diseases.

[19]  A. Townsend Peterson,et al.  Ecological niche and geographic distribution of the Chagas disease vector, Triatoma dimidiata (Reduviidae: Triatominae): Evidence for niche differentiation among cryptic species. , 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[20]  J. Ramsey,et al.  Landscape ecology of Trypanosoma cruzi in the southern Yucatan Peninsula. , 2015, Acta tropica.

[21]  E. Dumonteil,et al.  Infection Rate by Trypanosoma cruzi and Biased Vertebrate Host Selection in the Triatoma dimidiata (Hemiptera: Reduvidae) Species Complex , 2015, Journal of Medical Entomology.

[22]  R. Gürtler,et al.  Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples , 2015, PLoS neglected tropical diseases.

[23]  N. Carels,et al.  Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods , 2015, Parasites & Vectors.

[24]  S. Sauer,et al.  Deep Sequencing of the Trypanosoma cruzi GP63 Surface Proteases Reveals Diversity and Diversifying Selection among Chronic and Congenital Chagas Disease Patients , 2015, PLoS neglected tropical diseases.

[25]  E. Dumonteil,et al.  Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease , 2015, Memorias do Instituto Oswaldo Cruz.

[26]  Sébastien Gourbière,et al.  Ecology, evolution and control of Chagas disease: a century of neglected modelling and a promising future. , 2015, Advances in parasitology.

[27]  P. Azambuja,et al.  Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population , 2015, Parasites & Vectors.

[28]  D. Wesson,et al.  Genotype diversity of Trypanosoma cruzi in small rodents and Triatoma sanguisuga from a rural area in New Orleans, Louisiana , 2015, Parasites & Vectors.

[29]  P. Pennington,et al.  Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi , 2015, PLoS neglected tropical diseases.

[30]  E. Dumonteil,et al.  An innovative ecohealth intervention for Chagas disease vector control in Yucatan, Mexico , 2015, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[31]  S. De Urioste-Stone,et al.  Development of a community-based intervention for the control of Chagas disease based on peridomestic animal management: an eco-bio-social perspective , 2015, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[32]  D. Severson,et al.  Dynamics of midgut microflora and dengue virus impact on life history traits in Aedes aegypti. , 2014, Acta tropica.

[33]  P. Dorn,et al.  Triatoma sanguisuga Blood Meals and Potential for Chagas Disease, Louisiana, USA , 2014, Emerging infectious diseases.

[34]  G. Dimopoulos,et al.  The Insect Microbiome Modulates Vector Competence for Arboviruses , 2014, Viruses.

[35]  P. Dorn,et al.  Hunting, Swimming, and Worshiping: Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma dimidiata) in Guatemala and Belize , 2014, PLoS neglected tropical diseases.

[36]  W. Monteiro,et al.  Trypanosoma cruzi strain TcI is associated with chronic Chagas disease in the Brazilian Amazon , 2014, Parasites & Vectors.

[37]  P. Dorn,et al.  Free-roaming kissing bugs, vectors of Chagas disease, feed often on humans in the Southwest. , 2014, The American journal of medicine.

[38]  U. Kitron,et al.  Domestic Animal Hosts Strongly Influence Human-Feeding Rates of the Chagas Disease Vector Triatoma infestans in Argentina , 2014, PLoS neglected tropical diseases.

[39]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[40]  P. Nouvellet,et al.  The Improbable Transmission of Trypanosoma cruzi to Human: The Missing Link in the Dynamics and Control of Chagas Disease , 2013, PLoS neglected tropical diseases.

[41]  P. Dorn,et al.  Novel polymerase chain reaction-restriction fragment length polymorphism assay to determine internal transcribed spacer-2 group in the Chagas disease vector, Triatoma dimidiata (Latreille, 1811) , 2013, Memorias do Instituto Oswaldo Cruz.

[42]  J. C. Vazquez-Chagoyán,et al.  Preventive and therapeutic DNA vaccination partially protect dogs against an infectious challenge with Trypanosoma cruzi. , 2013, Vaccine.

[43]  P. Dorn,et al.  Vector blood meals are an early indicator of the effectiveness of the Ecohealth approach in halting Chagas transmission in Guatemala. , 2013, The American journal of tropical medicine and hygiene.

[44]  Yi-neng Wu,et al.  Trypanosome Infection Establishment in the Tsetse Fly Gut Is Influenced by Microbiome-Regulated Host Immune Barriers , 2013, PLoS pathogens.

[45]  Jorge Hernández,et al.  High frequency of human blood in Triatoma dimidiata captured inside dwellings in a rural community in the Yucatan Peninsula, Mexico, but low antibody seroprevalence and electrocardiographic findings compatible with Chagas disease in humans. , 2013, American Journal of Tropical Medicine and Hygiene.

[46]  B. Nogueda-Torres,et al.  Identification by Q-PCR of Trypanosoma cruzi lineage and determination of blood meal sources in triatomine gut samples in México. , 2013, Parasitology international.

[47]  C. Moreau,et al.  Surveying the Microbiome of Ants: Comparing 454 Pyrosequencing with Traditional Methods To Uncover Bacterial Diversity , 2012, Applied and Environmental Microbiology.

[48]  L. F. Chaves,et al.  Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes , 2012, PLoS neglected tropical diseases.

[49]  E. Dumonteil,et al.  Extensive diversity of Trypanosoma cruzi discrete typing units circulating in Triatoma dimidiata from central Veracruz, Mexico. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[50]  K. Acosta-Viana,et al.  Epidemiological Survey of Trypanosoma cruzi Infection in Domestic Owned Cats from the Tropical Southeast of Mexico , 2012, Zoonoses and public health.

[51]  K. Acosta-Viana,et al.  American Trypanosomiasis Infection in Fattening Pigs from the South‐East of Mexico , 2012, Zoonoses and public health.

[52]  D. Gorla,et al.  Effects of fipronil on dogs over Triatoma infestans, the main vector of Trypanosoma cruzi, causative agent of Chagas disease , 2012, Parasitology Research.

[53]  D. Pontier,et al.  Emergence and Prevalence of Human Vector-Borne Diseases in Sink Vector Populations , 2012, PloS one.

[54]  N. Carels,et al.  Cultivation-Independent Methods Reveal Differences among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease , 2012, PLoS neglected tropical diseases.

[55]  E. Dumonteil,et al.  House infestation dynamics and feeding sources of Triatoma dimidiata in central Veracruz, Mexico. , 2012, The American journal of tropical medicine and hygiene.

[56]  M. Llewellyn,et al.  The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[57]  J. Pascale,et al.  Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence , 2012, PLoS neglected tropical diseases.

[58]  P. Nouvellet,et al.  Effects of genetic factors and infection status on wing morphology of Triatoma dimidiata species complex in the Yucatán peninsula, Mexico. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[59]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[60]  M. Llewellyn,et al.  Extraordinary Trypanosoma cruzi diversity within single mammalian reservoir hosts implies a mechanism of diversifying selection , 2011, International journal for parasitology.

[61]  O. Bottasso,et al.  Immunological identification of Trypanosoma cruzi lineages in human infection along the endemic area. , 2011, The American journal of tropical medicine and hygiene.

[62]  A. E. Farfán-García,et al.  Conducta alimentaria de poblaciones de Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) en una zona endémica y sus implicaciones epidemiológicas , 2011 .

[63]  Sébastien Gourbière,et al.  Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models , 2010, PLoS neglected tropical diseases.

[64]  E. Dumonteil,et al.  Patterns of house infestation dynamics by non‐domiciliated Triatoma dimidiata reveal a spatial gradient of infestation in rural villages and potential insect manipulation by Trypanosoma cruzi , 2010, Tropical medicine & international health : TM & IH.

[65]  F. Tripet,et al.  Identification of a large hybrid zone between sympatric sibling species of Triatoma dimidiata in the Yucatan peninsula, Mexico, and its epidemiological importance. , 2009, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[66]  A. Romanha,et al.  A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. , 2009, Memorias do Instituto Oswaldo Cruz.

[67]  E. Dumonteil,et al.  Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico. , 2009, Vector borne and zoonotic diseases.

[68]  E. Dumonteil,et al.  Immunopathology of natural infection with Trypanosoma cruzi in dogs. , 2009, Veterinary parasitology.

[69]  U. Kitron,et al.  Effects of topical application of fipronil spot-on on dogs against the Chagas disease vector Triatoma infestans. , 2009, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[70]  P. Dorn,et al.  Two Distinct Triatoma dimidiata (Latreille, 1811) Taxa Are Found in Sympatry in Guatemala and Mexico , 2009, PLoS neglected tropical diseases.

[71]  P. Pennington,et al.  Short report: concurrent detection of Trypanosoma cruzi lineages I and II in domestic Triatoma dimidiata from Guatemala. , 2009, The American journal of tropical medicine and hygiene.

[72]  Hugo Devillers,et al.  An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations. , 2008, Journal of theoretical biology.

[73]  A. Osuna,et al.  Detection of Wolbachia Bacteria in Multiple Organs and Feces of the Triatomine Insect Rhodnius pallescens (Hemiptera, Reduviidae) , 2008, Applied and Environmental Microbiology.

[74]  M. Tibayrenc,et al.  Molecular Typing of Trypanosoma cruzi Isolates, United States , 2008, Emerging infectious diseases.

[75]  J. Dujardin,et al.  Phylogeography and Genetic Variation of Triatoma dimidiata, the Main Chagas Disease Vector in Central America, and Its Position within the Genus Triatoma , 2008, PLoS neglected tropical diseases.

[76]  Sébastien Gourbière,et al.  Demographic and dispersal constraints for domestic infestation by non-domicilated chagas disease vectors in the Yucatan Peninsula, Mexico. , 2008, The American journal of tropical medicine and hygiene.

[77]  E. Douzery,et al.  Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. , 2007, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[78]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[79]  Eric Dumonteil,et al.  Assessment of Triatoma dimidiata dispersal in the Yucatan Peninsula of Mexico by morphometry and microsatellite markers. , 2007, The American journal of tropical medicine and hygiene.

[80]  E. Dumonteil,et al.  Urban infestation by Triatoma dimidiata in the city of Mérida, Yucatán, México. , 2007, Vector borne and zoonotic diseases.

[81]  U. Kitron,et al.  Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina , 2006, Parasitology.

[82]  M. M. Teixeira,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[83]  E. Dumonteil,et al.  Identification in triatomine vectors of feeding sources and Trypanosoma cruzi variants by heteroduplex assay and a multiplex miniexon polymerase chain reaction. , 2006, The American journal of tropical medicine and hygiene.

[84]  Eloi S. Garcia,et al.  Gut microbiota and parasite transmission by insect vectors. , 2005, Trends in parasitology.

[85]  U. Kitron,et al.  PCR-based screening and lineage identification of Trypanosoma cruzi directly from faecal samples of triatomine bugs from northwestern Argentina , 2005, Parasitology.

[86]  R. Gürtler,et al.  Chagas disease control: deltamethrin-treated collars reduce Triatoma infestans feeding success on dogs. , 2005, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[87]  D. Cowan,et al.  Review and re-analysis of domain-specific 16S primers. , 2003, Journal of microbiological methods.

[88]  Hugo Ruiz-Piña,et al.  Geographic distribution of Triatoma dimidiata and transmission dynamics of Trypanosoma cruzi in the Yucatan peninsula of Mexico. , 2002, The American journal of tropical medicine and hygiene.

[89]  S. Catalá,et al.  Feeding frequency and nutritional status of peridomestic populations of Triatoma infestans from Argentina. , 1999, Acta tropica.

[90]  M. Ch Evaluation of dogs as sentinels of the transmission of Trypanosoma cruzi in a rural area of north-western Argentina , 1998 .

[91]  C. Beard,et al.  Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[92]  O. Fernandes,et al.  DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. , 1996, Molecular and biochemical parasitology.

[93]  H. Ruiz-Piña,et al.  Infection by Trypanosoma cruzi in mammals in Yucatan, Mexico: a serological and parasitological study. , 1996, Revista do Instituto de Medicina Tropical de Sao Paulo.

[94]  M. A. Basombrío,et al.  Field trial of vaccination against American trypanosomiasis (Chagas' disease) in dogs. , 1993, American Journal of Tropical Medicine and Hygiene.

[95]  C. Sing,et al.  A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. , 1992, Genetics.

[96]  J. Donelson,et al.  Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction , 1989, Journal of clinical microbiology.

[97]  H. A. Christensen,et al.  Host feeding profiles of Triatoma dimidiata in peridomestic habitats of western Panama. , 1988, The American journal of tropical medicine and hygiene.