A machine learning software to estimate morphological parameters of distant galaxies

We develop a machine learning (ML) software to estimate morphological parameters (e.g., the half-light radius re) of high redshift galaxies in the Subaru/Hyper Suprime-Cam data. To make the ML software capture simultaneously galaxy morphological features and point spread function (PSF) broadening effects, we implement a two-stream convolutional neural network (CNN) for inputs of galaxy and PSF images. Thanks to large training samples of galaxy and PSF images, the two-stream CNN estimates re more accurately than a single-stream CNN with only galaxy images. Our ML software would be a useful tool to investigate galaxy morphological properties with PSF-unstable images obtained in future large-area ground-based surveys.

[1]  J. Sérsic,et al.  Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .

[2]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[3]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[4]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[5]  Sergey E. Koposov,et al.  GEMS: Galaxy Fitting Catalogs and Testing Parametric Galaxy Fitting Codes: GALFIT and GIM2D , 2007, 0704.2601.

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[8]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[9]  Masayuki Tanaka,et al.  Stellar Velocity Dispersion of a Massive Quenching Galaxy at z = 4.01 , 2019, The Astrophysical Journal.

[10]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[11]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. II. EVOLUTION OF CLUMPY GALAXIES , 2015, 1511.07054.

[12]  E. Decenciere,et al.  Deep learning for galaxy surface brightness profile fitting , 2017, Monthly Notices of the Royal Astronomical Society.

[13]  Michael C. Cooper,et al.  THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES , 2012, 1203.1651.

[14]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[15]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.