A machine learning software to estimate morphological parameters of distant galaxies
暂无分享,去创建一个
Takashi Kojima | Noriaki Miura | Seiji Fujimoto | Takatoshi Shibuya | Ken-ichi Tadaki | Yu-Yen Chang | Takuya Umayahara | Yuichi Harikane | Ryo Higuchi | Shigeki Inoue | Yoshiki Toba
[1] J. Sérsic,et al. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .
[2] Chien Y. Peng,et al. DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.
[3] Masami Ouchi,et al. MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.
[4] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[5] Sergey E. Koposov,et al. GEMS: Galaxy Fitting Catalogs and Testing Parametric Galaxy Fitting Codes: GALFIT and GIM2D , 2007, 0704.2601.
[6] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[7] L. Ho,et al. Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.
[8] A. K. Inoue,et al. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.
[9] Masayuki Tanaka,et al. Stellar Velocity Dispersion of a Massive Quenching Galaxy at z = 4.01 , 2019, The Astrophysical Journal.
[10] Yukiko Kamata,et al. First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.
[11] Masami Ouchi,et al. MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. II. EVOLUTION OF CLUMPY GALAXIES , 2015, 1511.07054.
[12] E. Decenciere,et al. Deep learning for galaxy surface brightness profile fitting , 2017, Monthly Notices of the Royal Astronomical Society.
[13] Michael C. Cooper,et al. THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES , 2012, 1203.1651.
[14] O. Fèvre,et al. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.
[15] Nitish Srivastava,et al. Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.