Two Components of the Cardiac Action Potential I. Voltage-time Course and the Effect of Acet.flcholine on Atrial and Nodal Cells of the Rabbit Heart the Journal of General Physiology

Transmembrane potentials recorded from the rabbit heart in vitro were displayed as voltage against time (V, t display), and dV/dt against voltage (I?, V or phase-plane display). Acetylcholine was applied to the recording site by means of a hydraulic system. Results showed that (a) differences in time course of action potential upstroke can be explained in terms of the relative magnitude of fast and slow phases of depolarization; (b) acetylcholine is capable of depressing the slow phase of depolarization as well as the plateau of the action potential; and (¢) action potentials from nodal (SA and AV) cells seem to lack the initial fast phase. These results were construed to support a two-component hypothesis for cardiac electrogenesis. The hypothesis states that cardiac action potentials are composed of two distinct and physiologically separable "components" which result from discrete mechanisms. An initial fast component is a sodium spike similar to that of squid nerve. The slow component , which accounts for both a slow depolarization during phase 0 and the plateau, probably is dependent on the properties of a slow inward current having a positive equilibrium potential, coupled to a decrease in the resting potassium conductance. According to the hypothesis, SA and AV nodal action potentials are due entirely or almost entirely to the slow component and can therefore be expected to exhibit unique electrophysiological and pharmacological properties. Differences in the voltage-time course of transmembrane action potentials recorded from a variety of cell types in the same m a m m a l i a n heart have been described by several investigators (see Hoffman and Cranefield, 1960). T h e detailed electrophysiological studies carried out on the right atrial preparation of the rabbit heart showed that action potentials from sinoatrial (SA) and atrioventricular (AV) nodes have a remarkably slow rising phase, lasting up 607

[1]  R. Abdulla Electrophysiology of the Heart , 1997, Pediatric Cardiology.

[2]  S. Weidmann Electrical constants of trabecular muscle from mammalian heart , 1970, The Journal of physiology.

[3]  R. McAllister Computed membrane currents in cardiac Purkinje fibers during voltage clamps. , 1969, Biophysical journal.

[4]  H. Reuter Slow inactivation of currents in cardiac Purkinje fibres , 1968, The Journal of physiology.

[5]  D. Noble,et al.  The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres , 1968, The Journal of physiology.

[6]  H. Reuter,et al.  The dependence of slow inward current in Purkinje fibres on the extracellular calcium‐concentration , 1967, The Journal of physiology.

[7]  D. Noble,et al.  The effect of subthreshold potentials on the membrane current in cardiac Purkinje fibres , 1967, The Journal of physiology.

[8]  A. Hodgkin,et al.  The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle , 1966, The Journal of physiology.

[9]  D. Noble,et al.  The time and voltage dependence of the slow outward current in cardiac Purkinje fibres , 1966, The Journal of physiology.

[10]  B. Hoffman,et al.  Two Components of the Cardiac Action Potential , 1966, Nature.

[11]  R. Orkand,et al.  The dual effect of calcium on the action potential of the frog's heart , 1966, The Journal of physiology.

[12]  B. Pillat Über eine abnormale Verkürzung des Aktionspotentials in der relativen Refraktärphase des Herzmuskels , 1964, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[13]  N. Sperelakis,et al.  WEAK ELECTROTONIC INTERACTION BETWEEN CONTIGUOUS CARDIAC CELLS. , 1964, The American journal of physiology.

[14]  W. Trautwein,et al.  Ionic currents in cardiac excitation , 1964, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[15]  H. Jenerick AN ANALYSIS OF THE STRIATED MUSCLE FIBER ACTION CURRENT. , 1964, Biophysical journal.

[16]  E. Carmeliet Influence of Lithium Ions on the Transmembrane Potential and Cation Content of Cardiac Cells , 1964, The Journal of general physiology.

[17]  H. Jenerick,et al.  PHASE PLANE TRAJECTORIES OF THE MUSCLE SPIKE POTENTIAL. , 1963, Biophysical journal.

[18]  W. Trautwein Generation and conduction of impulses in the heart as affected by drugs. , 1963, Pharmacological reviews.

[19]  Leon Churney,et al.  Is the Fundamental Electrical Response of the Single Heart Muscle Cell a Spike Potential? , 1963, The Journal of general physiology.

[20]  R. Stockwell The Specialized Tissues of the Heart , 1963 .

[21]  D. Noble,et al.  Current—voltage relations of Purkinje fibres in sodium‐deficient solutions , 1963, The Journal of physiology.

[22]  E. Wright,et al.  Action potential of amphibian single auricular muscle fiber: a dual response. , 1961, The American journal of physiology.

[23]  A. J. Brady,et al.  The sodium‐potassium hypothesis as the basis of electrical activity in frog ventricle , 1960, The Journal of physiology.

[24]  D. Noble,et al.  Rectifying Properties of Heart Muscle , 1960, Nature.

[25]  A. de Carvalho,et al.  Spread of Activity Through the Atrioventricular Node , 1960, Circulation research.

[26]  B. Hoffman Electrophysiology of single cardiac cells. , 1959, Bulletin of the New York Academy of Medicine.

[27]  J. Délèze,et al.  Perfusion of a Strip of Mammalian Ventricle: Effects of K‐Rich and Na‐Deficient Solutions on Transmembrane Potentials , 1959, Circulation research.

[28]  B. Hoffman,et al.  Electrophysiological evidence for specialized fiber types in rabbit atrium. , 1959, The American journal of physiology.

[29]  B. Hoffman,et al.  Effects of Acetylcholine on Single Fibers of the Atrioventricular Node , 1959, Circulation research.

[30]  B. Hoffman,et al.  Electrical Activity of Single Fibers of the Atrioventricular Node , 1959, Circulation research.

[31]  A. C. Young,et al.  The Mechanism of Atrioventricular Conduction , 1959, Circulation research.

[32]  O. Hutter,et al.  VAGAL AND SYMPATHETIC EFFECTS ON THE PACEMAKER FIBERS IN THE SINUS VENOSUS OF THE HEART , 1956, The Journal of general physiology.

[33]  S. Weidmann,et al.  The effect of the cardiac membrane potential on the rapid availability of the sodium‐carrying system , 1955, The Journal of physiology.

[34]  A. Burgen,et al.  On the negative inotropic effect in the cat's auricle , 1953, The Journal of physiology.

[35]  S. Weidmann,et al.  The electrical constants of Purkinje fibres , 1952, The Journal of physiology.

[36]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[37]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[38]  A. Hodgkin,et al.  The components of membrane conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[39]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[40]  S. Weidmann,et al.  Effect of current flow on the membrane potential of cardiac muscle , 1951, The Journal of physiology.

[41]  S. Weidmann,et al.  Cardiac resting and action potentials recorded with an intracellular electrode , 1951, The Journal of physiology.

[42]  J. Dudel,et al.  The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers) , 2005, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[43]  J. Dudel,et al.  The potassium component of membrane current in Purkinje fibers , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[44]  G. Vassort,et al.  Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique , 2004, Pflügers Archiv.

[45]  Edward A. Johnson,et al.  A STRAND OF CARDIAC MUSCLE Its Ultrastructure and the Electrophysiological Implications of Its Geometry , 2003 .

[46]  D. Noble,et al.  Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current , 1969, The Journal of physiology.

[47]  D. Noble,et al.  The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres , 1969, The Journal of physiology.

[48]  J. Alanís,et al.  Correlative ultrastructural and electrophysiological study of the Purkinje system of the heart. , 1969, Journal of electrocardiology.

[49]  D. Noble,et al.  Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres , 1969, The Journal of physiology.

[50]  S. Weidmann,et al.  Membrane currents in mammalian ventricular heart muscle fibres using a "voltage-clamp" technique. , 1967, Helvetica physiologica et pharmacologica acta.

[51]  D. Noble,et al.  Applications of Hodgkin-Huxley equations to excitable tissues. , 1966, Physiological reviews.

[52]  H A Fozzard,et al.  Membrane capacity of the cardiac Purkinje fibre , 1966, The Journal of physiology.

[53]  A. Shanes Electrochemical aspects of physiological and pharmacological action in excitable cells. II. The action potential and excitation. , 1958, Pharmacological reviews.

[54]  E CORABOEUF,et al.  Temperature effects on the electrical activity of Purkinje fibres. , 1954, Helvetica physiologica et pharmacologica acta.