Quantum state atomic force microscopy

New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.

[1]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2013 .

[2]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[3]  A. Raychaudhuri,et al.  A method to quantitatively evaluate the Hamaker constant using the jump-into-contact effect in atomic force microscopy , 2007, Nanotechnology.

[4]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[5]  M. Aspelmeyer,et al.  Cooling-by-measurement and mechanical state tomography via pulsed optomechanics , 2012, Nature Communications.

[6]  G. J. Milburn,et al.  Pulsed quantum optomechanics , 2010, Proceedings of the National Academy of Sciences.

[7]  A Passian,et al.  Opto-nanomechanical spectroscopic material characterization. , 2015, Nature nanotechnology.

[8]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[9]  J. Teufel,et al.  Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object , 2015, Physical review. X.

[10]  G. Finkelstein,et al.  Low-temperature conductive tip atomic force microscope for carbon nanotube probing and manipulation , 2007 .

[11]  Hailin Wang,et al.  Resolved-sideband and cryogenic cooling of an optomechanical resonator , 2009 .

[12]  Reynaud,et al.  Quantum-noise reduction using a cavity with a movable mirror. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[13]  S Eslami,et al.  Virtual resonance and frequency difference generation by van der Waals interaction. , 2011, Physical review letters.

[14]  U. Joshi,et al.  Low temperature Atomic Force Microscopy-A Review , 2012 .

[15]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[16]  M. Pinard,et al.  High-sensitivity optical measurement of mechanical Brownian motion , 1999, quant-ph/9901056.

[17]  George Siopsis,et al.  Strong quantum squeezing near the pull-in instability of a nonlinear beam , 2016 .

[18]  Y. Sugawara,et al.  Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces. , 2016, The Review of scientific instruments.

[19]  R. Muñoz-Tapia Quantum mechanical squeezed state , 1993 .

[20]  C. K. Law,et al.  Parametric generation of quadrature squeezing of mirrors in cavity optomechanics , 2011, 1101.5655.

[21]  Michael R. Vanner,et al.  Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity , 2009, 0901.1801.

[22]  R. E. Thomson LOW-TEMPERATURE ATOMIC FORCE MICROSCOPE USING PIEZORESISTIVE CANTILEVERS , 1999 .

[23]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[24]  P. Mulvaney,et al.  Measurement of the forces between gold surfaces in water by atomic force microscopy , 1994 .

[25]  M. Vanner,et al.  Towards optomechanical quantum state reconstruction of mechanical motion , 2014, 1406.1013.

[26]  A Passian,et al.  New modes for subsurface atomic force microscopy through nanomechanical coupling. , 2010, Nature nanotechnology.

[27]  Jochen Mannhart,et al.  Revealing the hidden atom in graphite by low-temperature atomic force microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.