An Intercomparison of Sampling Methods for Uncertainty Quantification of Environmental Dynamic Models
暂无分享,去创建一个
Wei Gong | Zhenhua Di | Qingyun Duan | Yongjiu Dai | Q. Duan | A. Ye | Yongjiu Dai | Chen Wang | Z. Di | W. Gong | J. Li | C. Miao | Chen Wang | J. D. Li | A. Z. Ye | C. Y. Miao | Q. Duan
[1] Donald E. Brown,et al. Global Optimization With Multivariate Adaptive Regression Splines , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[2] Stefano Tarantola,et al. Evaluation of MARS modeling technique for sensitivity analysis of model output , 2010 .
[3] Peter Winker,et al. Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002, Math. Comput..
[4] Boxin Tang. Orthogonal Array-Based Latin Hypercubes , 1993 .
[5] I. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[6] Runze Li,et al. Design and Modeling for Computer Experiments , 2005 .
[7] Yong Zhang,et al. Uniform Design: Theory and Application , 2000, Technometrics.
[8] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[9] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[10] J HickernellF,et al. The Uniform Design and Its Applications , 1995 .
[11] 有薗 育生,et al. 最適設備規模設定に関するDistribution Free Approach , 1999 .
[12] Jon C. Helton,et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..
[13] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[14] Wei Gong,et al. Multi-objective parameter optimization of common land model using adaptive surrogate modeling , 2014 .
[15] A. Owen. Controlling correlations in latin hypercube samples , 1994 .
[16] Indulata Shukla. Application of Number Theory to Cryptography , 2014 .
[17] Wei Gong,et al. Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis , 2013 .
[18] Jerome Sacks,et al. Designs for Computer Experiments , 1989 .
[19] Saltelli Andrea,et al. Sensitivity Analysis for Nonlinear Mathematical Models. Numerical ExperienceSensitivity Analysis for Nonlinear Mathematical Models. Numerical Experience , 1995 .
[20] Colas Schretter,et al. Monte Carlo and Quasi-Monte Carlo Methods , 2016 .
[21] R. Iman,et al. A distribution-free approach to inducing rank correlation among input variables , 1982 .
[22] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[23] Sandra Milev,et al. Assessing Parameter Importance in Decision Models. Application to Health Economic Evaluations , 2013 .
[24] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[25] J. E. H. Shaw,et al. A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .
[26] Samim Konjicija,et al. Multi-objective parameter optimization of S-MAC protocol , 2014, 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).
[27] Soroosh Sorooshian,et al. Constraining Land Surface and Atmospheric Parameters of a Locally Coupled Model Using Observational Data , 2005 .
[28] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[29] Eva Riccomagno,et al. Experimental Design and Observation for Large Systems , 1996, Journal of the Royal Statistical Society: Series B (Methodological).
[30] T. J. Mitchell,et al. Exploratory designs for computational experiments , 1995 .
[31] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[32] J. Freidman,et al. Multivariate adaptive regression splines , 1991 .
[33] K Ang,et al. A NOTE ON UNIFORM DISTRIBUTION AND EXPERIMENTAL DESIGN , 1981 .
[34] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[35] Wei Gong,et al. An evaluation of adaptive surrogate modeling based optimization with two benchmark problems , 2014, Environ. Model. Softw..
[36] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[37] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[38] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[39] Henry P. Wynn,et al. Maximum entropy sampling , 1987 .
[40] S. Sorooshian,et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .
[41] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[42] Yuan Wang,et al. Some Applications of Number-Theoretic Methods in Statistics , 1994 .
[43] K. Fang,et al. Number-theoretic methods in statistics , 1993 .
[44] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[45] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[46] Kenny Q. Ye,et al. Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .
[47] William Li,et al. Columnwise-pairwise algorithms with applications to the construction of supersaturated designs , 1997 .