Addressing overfitting and underfitting in Gaussian model-based clustering
暂无分享,去创建一个
[1] P. McNicholas. Mixture Model-Based Classification , 2016 .
[2] D. M. Titterington,et al. Variational approximations in Bayesian model selection for finite mixture distributions , 2007, Comput. Stat. Data Anal..
[3] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[4] Dimitris Karlis,et al. Choosing Initial Values for the EM Algorithm for Finite Mixtures , 2003, Comput. Stat. Data Anal..
[5] Salvatore Ingrassia,et al. Constrained monotone EM algorithms for mixtures of multivariate t distributions , 2010, Stat. Comput..
[6] B. Stocks. Fire behavior in mature jack pine , 1987 .
[7] Gérard Govaert,et al. Gaussian parsimonious clustering models , 1995, Pattern Recognit..
[8] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[9] C. Biernacki,et al. Degeneracy in the maximum likelihood estimation of univariate Gaussian mixtures with EM , 2003 .
[10] B. Efron. Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .
[11] Christophe Biernacki,et al. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models , 2003, Comput. Stat. Data Anal..
[12] R. Tibshirani,et al. Model Search by Bootstrap “Bumping” , 1999 .
[13] Jordi Vitrià,et al. Learning mixture models using a genetic version of the EM algorithm , 2000, Pattern Recognition Letters.
[14] G. McLachlan. On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture , 1987 .
[15] Roger W. Johnson,et al. Exploring Relationships in Body Dimensions , 2003 .
[16] H. Kaiser. The Application of Electronic Computers to Factor Analysis , 1960 .
[17] Salvatore Ingrassia,et al. Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints , 2011, Comput. Stat. Data Anal..
[18] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[19] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[20] Cordelia Schmid,et al. High-dimensional data clustering , 2006, Comput. Stat. Data Anal..
[21] Paul D. McNicholas,et al. Using evolutionary algorithms for model-based clustering , 2013, Pattern Recognit. Lett..
[22] B. Efron,et al. The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .
[23] Bettina Gr,et al. BOOTSTRAPPING FINITE MIXTURE MODELS , 2004 .
[24] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[25] Paul D. McNicholas,et al. Parsimonious Gaussian mixture models , 2008, Stat. Comput..
[26] N. Campbell,et al. A multivariate study of variation in two species of rock crab of the genus Leptograpsus , 1974 .
[27] S. Ingrassia. A likelihood-based constrained algorithm for multivariate normal mixture models , 2004 .
[28] Christian P. Robert,et al. Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation , 1998, Stat. Comput..
[29] Lengyi Han,et al. Dionysus: a stochastic fire growth scenario generator , 2014 .
[30] Salvatore Ingrassia,et al. Constrained monotone EM algorithms for finite mixture of multivariate Gaussians , 2007, Comput. Stat. Data Anal..
[31] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[32] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[33] J. Durbin,et al. Testing for serial correlation in least squares regression. II. , 1950, Biometrika.
[34] Peter Adams,et al. The EMMIX software for the fitting of mixtures of normal and t-components , 1999 .
[35] Hagai Attias,et al. Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.
[36] S. Wood,et al. Minimising model fitting objectives that contain spurious local minima by bootstrap restarting , 2001 .
[37] Paul D. McNicholas,et al. Model-Based Clustering , 2016, Journal of Classification.
[38] B. Stocks. Fire Potential in the Spruce Budworm-damaged Forests of Ontario , 1987 .
[39] Djamel Bouchaffra,et al. Genetic-based EM algorithm for learning Gaussian mixture models , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[40] Donald B. Rubin,et al. EM and beyond , 1991 .
[41] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[42] Charles Bouveyron,et al. Model-based clustering of high-dimensional data: A review , 2014, Comput. Stat. Data Anal..
[43] H. Kaiser. A NOTE ON GUTTMAN'S LOWER BOUND FOR THE NUMBER OF COMMON FACTORS1 , 1961 .
[44] L. Guttman. Some necessary conditions for common-factor analysis , 1954 .
[45] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[46] Wei-Chien Chang. On using Principal Components before Separating a Mixture of Two Multivariate Normal Distributions , 1983 .