Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools

A joint experimental/modelling approach has been conducted to get some insight into the microscopic mechanism in play for a series of small gas molecules including CH4, CO2, N2 and H2S in the porous aluminium-based (Al3+) terephthalate MIL-68 solid containing two distinct pore channels (MIL: Materials of Institute Lavoisier). A further step consisted of predicting the separation performances of this material for the CO2/CH4 and CO2/N2 mixtures that are compared to the other MOFs reported so far in the literature. The theoretical impact of the functionalization of the organic linker via amino groups on the selectivity of this hybrid material for these gas mixtures is then pointed out. Finally, the stability of the solid upon H2S adsorption which is commonly present in the raw natural gas is confirmed.

[1]  M. Carreon,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[2]  J. Marrot,et al.  VIII(OH)[O2C-C6H4-CO2].(HO2C-C6H4-CO2H)x(DMF)y(H2O)z(or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: reticular synthesis with infinite inorganic building blocks? , 2004, Chemical communications.

[3]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[4]  S. Calero,et al.  Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks. , 2008, Physical chemistry chemical physics : PCCP.

[5]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[6]  T. Vlugt,et al.  Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. , 2008, Journal of chemical theory and computation.

[7]  T. Bein,et al.  Implementing chemical functionality into oriented films of metal–organic frameworks on self-assembled monolayers , 2011 .

[8]  Seth M Cohen,et al.  Isoreticular synthesis and modification of frameworks with the UiO-66 topology. , 2010, Chemical communications.

[9]  C. Serre,et al.  On the breathing effect of a metal-organic framework upon CO(2) adsorption: Monte Carlo compared to microcalorimetry experiments. , 2007, Chemical communications.

[10]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[11]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. , 2005, The journal of physical chemistry. B.

[12]  A. Ghoufi,et al.  Molecular Insight into the Adsorption of H2S in the Flexible MIL-53(Cr) and Rigid MIL-47(V) MOFs: Infrared Spectroscopy Combined to Molecular Simulations , 2011 .

[13]  J. Mota,et al.  Experimental and Theoretical Studies of Supercritical Methane Adsorption in the MIL-53(Al) Metal Organic Framework , 2011 .

[14]  G. Weireld,et al.  Automated determination of high-temperature and high-pressure gas adsorption isotherms using a magnetic suspension balance , 1999 .

[15]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[16]  J. Tarascon,et al.  Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL‐68(Fe) Solid , 2010 .

[17]  C. Serre,et al.  Understanding the Thermodynamic and Kinetic Behavior of the CO2/CH4 Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach , 2011 .

[18]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[19]  S. Bordiga,et al.  Tailoring metal-organic frameworks for CO2 capture: the amino effect. , 2011, ChemSusChem.

[20]  C. Serre,et al.  Why hybrid porous solids capture greenhouse gases? , 2011, Chemical Society reviews.

[21]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[22]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[23]  P. A. Jacobs,et al.  An attempt to rationalize stretching frequencies of lattice hydroxyl groups in hydrogen-zeolites , 1982 .

[24]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[25]  A. Chaffee,et al.  CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks , 2010 .

[26]  Rosendo Valero,et al.  Consistent van der Waals radii for the whole main group. , 2009, The journal of physical chemistry. A.

[27]  J. Hupp,et al.  Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations , 2011 .

[28]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[29]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[30]  Wolfgang Wagner,et al.  A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa , 1991 .

[31]  J. Marrot,et al.  The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. , 2008, Inorganic chemistry.

[32]  G. Kamath,et al.  Effect of partial charge parametrization on the fluid phase behavior of hydrogen sulfide. , 2005, The Journal of chemical physics.

[33]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[34]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[35]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[36]  A. Bondi van der Waals Volumes and Radii , 1964 .

[37]  C. Serre,et al.  Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. , 2009, Journal of the American Chemical Society.

[38]  D. Vos,et al.  Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework , 2009 .

[39]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[40]  S. Dai,et al.  Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[41]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[42]  S. Deng,et al.  Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. , 2011, Journal of colloid and interface science.

[43]  J. V. van Bokhoven,et al.  Catalysis by metal-organic frameworks: fundamentals and opportunities. , 2011, Physical chemistry chemical physics : PCCP.

[44]  W. Zhou,et al.  Carbon capture in metal–organic frameworks—a comparative study , 2011 .

[45]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[46]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[47]  Y. Belmabkhout,et al.  High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods , 2004 .

[48]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[49]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[50]  C. Serre,et al.  Multistep N2 breathing in the metal-organic framework co(1,4-benzenedipyrazolate). , 2010, Journal of the American Chemical Society.

[51]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  Vincent Guillerm,et al.  Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. , 2011, Chemical communications.

[54]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[55]  Marc Marshall,et al.  CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X) , 2009 .

[56]  José A.C. Silva,et al.  A Microporous Metal−Organic Framework for Separation of CO2/N2 and CO2/CH4 by Fixed-Bed Adsorption , 2008 .

[57]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[58]  G. Pirngruber,et al.  CO2 and CH4 Separation by Adsorption Using Cu-BTC Metal−Organic Framework , 2010 .

[59]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[60]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[61]  M. Pera‐Titus,et al.  Evaluation of Energy Heterogeneity in Metal−Organic Frameworks: Absence of Henry’s Region in MIL-53 and MIL-68 Materials? , 2010 .

[62]  Roland Span,et al.  Short Fundamental Equations of State for 20 Industrial Fluids , 2006 .

[63]  Alírio E. Rodrigues,et al.  Metal Organic Framework Adsorbent for Biogas Upgrading , 2008 .

[64]  Alexander M. Spokoyny,et al.  Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. , 2010, Chemical communications.

[65]  A. Ghoufi,et al.  Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. , 2009, Journal of the American Chemical Society.

[66]  Chongli Zhong,et al.  Molecular Simulation of Adsorption of HCFC-22 in Pillared Clays , 2005 .

[67]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.