High harmonic generation by resonant plasmon field enhancement

We explain how to produce coherent XUV radiation at high repetition rate by means of high harmonic generation using locally enhanced femtosecond laser pulses by surface plasmon.

[1]  Kapteyn,et al.  Enhanced high-harmonic generation using 25 fs laser pulses. , 1996, Physical review letters.

[2]  I. Lin,et al.  Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance , 2007 .

[3]  Henry C. Kapteyn,et al.  GENERATION OF COHERENT SOFT X RAYS AT 2.7 NM USING HIGH HARMONICS , 1997 .

[4]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[5]  Ivanov,et al.  Theory of high-harmonic generation by low-frequency laser fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  A. Verhoef,et al.  Laser technology: Source of coherent kiloelectronvolt X-rays , 2005, Nature.

[7]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[8]  J. Güdde,et al.  Damage threshold dependence on electron–phonon coupling in Au and Ni films , 1998 .

[9]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[10]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[11]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[12]  Wanxin Sun,et al.  Optimizing the near field around silver tips. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  L'Huillier,et al.  High-order harmonic generation in rare gases with an intense short-pulse laser. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  Mauro Nisoli Nanoplasmonics: brave new attoworld , 2007 .

[15]  John T. Krug,et al.  Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation , 2002 .

[16]  Qian Tian,et al.  Modified Debye model parameters of metals applicable for broadband calculations. , 2007, Applied optics.

[17]  Xianfan Xu,et al.  Enhanced optical near field from a bowtie aperture , 2006 .

[18]  Reuven Gordon,et al.  Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film , 2006 .

[19]  A. V. Bragas,et al.  Field-enhanced scanning optical microscope. , 2000, Optics letters.

[20]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[21]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[22]  Tiberiu-Dan Onuta,et al.  Optical field enhancement at cusps between adjacent nanoapertures. , 2007, Nano letters.

[23]  Soo Jin Chua,et al.  Femtosecond pulse laser ablation of sapphire in ambient air , 2004 .

[24]  Jun Ye,et al.  Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. , 2005, Physical review letters.

[25]  Thomas Udem,et al.  A frequency comb in the extreme ultraviolet , 2005, Nature.