Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells

Abstract Phosphoric acid-doped polybenzimidazole membranes offer great potential for high-temperature proton exchange membrane applications due to their high proton conductivity at high-temperature and low-humidity conditions. However, it remains a major challenge in fabricating high-performance membranes with both high proton conductivity and good mechanical strength. Here, a series of polybenzimidazoles with increased imidazole groups are obtained by incorporating some benzimidazole groups onto an arylether-type polybenzimidazole backbone via a simple and efficient N-substituted reaction without catalyst. This arylether-type polybenzimidazole is verified to exhibit good solubility under extremely high molecular weight, and it provides the possibility for fabricating the high mechanical strength membranes at high phosphoric acid doping levels. It is of interest to find that the introduction of additional bulky benzimidazole moieties even enhance the mechanical strength of the membranes, and at the same time, significantly improve their acid doping levels, acid doping rate and proton conductivity. Importantly, the acid-doped grafted membranes show superior dimensional-mechanical stability even at high acid loading. With an acid doping level of 22.1, the grafted membrane displays a high conductivity of 212 mS cm−1 at 200 °C without humidification. A H2/O2 fuel cell based on this membrane has a peak power density of 443 mW cm−2 at 160 °C.

[1]  T. Chung The effect of lithium chloride on polybenzimidazole and polysulfone blend fibers , 1994 .

[2]  R. Savinell,et al.  Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix , 2011 .

[3]  X. Li,et al.  Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs) , 2013 .

[4]  C. Tomasi,et al.  Polysulfonation of PBI-based membranes for HT-PEMFCs: a possible way to maintain high proton transport at a low H3PO4 doping level , 2014 .

[5]  M. Mathe,et al.  Proton exchange membranes based on poly(2,5-benzimidazole) and sulfonated poly(ether ether ketone) for fuel cells , 2012 .

[6]  Hsiu-Li Lin,et al.  Properties and fuel cell applications of polybenzimidazole and ethyl phosphoric acid grafted polybenzimidazole blend membranes , 2015 .

[7]  Hsiu-Li Lin,et al.  Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells , 2012 .

[8]  E. Quartarone,et al.  Polysulfonated Fluoro‐oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H3PO4 Doping Levels , 2014 .

[9]  E. Quartarone,et al.  Polybenzimidazole‐Based Membranes as a Real Alternative to Nafion for Fuel Cells Operating at Low Temperature , 2008 .

[10]  Piercarlo Mustarelli,et al.  Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review , 2017, Materials.

[11]  C. Laberty‐Robert,et al.  Design and properties of functional hybrid organic-inorganic membranes for fuel cells. , 2011, Chemical Society reviews.

[12]  L. Cleemann,et al.  Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications , 2013 .

[13]  C. Scheu,et al.  Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells , 2014 .

[14]  Mark E Tuckerman,et al.  The mechanism of proton conduction in phosphoric acid. , 2012, Nature chemistry.

[15]  R. He,et al.  Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes , 2015 .

[16]  Hyuk Chang,et al.  Poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] and poly[6-fluoro-3-(pyridin-2-yl)-3,4-dihydro-2H-benzoxazine] based polymer electrolyte membranes for fuel cells at elevated temperature , 2012, Macromolecular Research.

[17]  Hongwei Zhang,et al.  Advances in the high performance polymer electrolyte membranes for fuel cells. , 2012, Chemical Society reviews.

[18]  M. Pina,et al.  Nanostructured electrolyte membranes based on zeotypes, protic ionic liquids and porous PBI membranes: Preparation, characterization and MEA testing , 2012 .

[19]  Jinbao Zhao,et al.  Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells , 2016 .

[20]  Pedro Gómez-Romero,et al.  Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. , 2010, Chemical Society reviews.

[21]  T. Jana,et al.  Soluble Polybenzimidazoles for PEM: Synthesized from Efficient, Inexpensive, Readily Accessible Alternative Tetraamine Monomer , 2013 .

[22]  H. Na,et al.  Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells , 2012 .

[23]  Y. Lee,et al.  Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2011 .

[24]  K. Kreuer,et al.  Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells? , 2017, Physical chemistry chemical physics : PCCP.

[25]  J. Kallitsis,et al.  Covalent cross-linking in phosphoric acid of pyridine based aromatic polyethers bearing side double bonds for use in high temperature polymer electrolyte membrane fuelcells , 2013 .

[26]  L. Cleemann,et al.  Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells , 2012 .

[27]  B. Benicewicz,et al.  Synthesis of Poly (2,2′‐(1,4‐phenylene) 5,5′‐bibenzimidazole) (para‐PBI) and Phosphoric Acid Doped Membrane for Fuel Cells , 2009 .

[28]  P. Eaton,et al.  Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid , 1973 .

[29]  Hongwei Ma,et al.  Dimensionally-stable phosphoric acid–doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells , 2016 .

[30]  Piercarlo Mustarelli,et al.  Polymer fuel cells based on polybenzimidazole/H3PO4 , 2012 .

[31]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[32]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[33]  Brian C. Benicewicz,et al.  Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells , 2010 .

[34]  D. Aili,et al.  Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells , 2013 .

[35]  James M. Fenton,et al.  Effect of Catalyst Properties on Membrane Degradation Rate and the Underlying Degradation Mechanism in PEMFCs , 2006 .

[36]  Hyuk Chang,et al.  Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature , 2012 .

[37]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[38]  J. Maier,et al.  Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7-H3PO4·2H2O): a 1H, 31P and 17O PFG-NMR and conductivity study. , 2016, Physical chemistry chemical physics : PCCP.

[39]  D. Plackett,et al.  High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells , 2011 .

[40]  M. Pina,et al.  Nanoporous PBI membranes by track etching for high temperature PEMs , 2014 .

[41]  M. Welsch,et al.  Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane , 2014 .

[42]  T. L. Yu,et al.  Polybenzimidazole and benzyl-methyl-phosphoric acid grafted polybenzimidazole blend crosslinked membrane for proton exchange membrane fuel cells , 2014 .

[43]  Qingfeng Li,et al.  Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells , 2013 .

[44]  Chenxi Xu,et al.  Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells , 2012 .

[45]  Jong‐Chan Lee,et al.  Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications , 2009 .

[46]  M. Marrony,et al.  Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions , 2008 .

[47]  N. Kim,et al.  A new self-cross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells , 2010 .

[48]  K. Vezzù,et al.  Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells. , 2015, ChemSusChem.

[49]  T. Jana,et al.  Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: influence of organic/inorganic interface. , 2014, ACS applied materials & interfaces.

[50]  Brian C. Benicewicz,et al.  Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs , 2009 .

[51]  K. Müllen,et al.  Functionalized poly(benzimidazole)s as membrane materials for fuel cells , 2007 .

[52]  S. Hsu,et al.  Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells , 2011 .

[53]  M. Javanbakht,et al.  Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells , 2015 .

[54]  H. Na,et al.  End-group cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane , 2012 .

[55]  Zandrie Borneman,et al.  Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications , 2013 .

[56]  K. Scott,et al.  Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells , 2011 .

[57]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[58]  Manabu Tanaka,et al.  Phosphoric acid-doped sulfonated polyimide and polybenzimidazole blend membranes: high proton transport at wide temperatures under low humidity conditions due to new proton transport pathways , 2012 .

[59]  Xiuping Li,et al.  Functionalized 4-phenyl phthalazinone-based polybenzimidazoles for high-temperature PEMFC , 2013 .

[60]  Hsiu-Li Lin,et al.  Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells , 2016, Journal of Polymer Research.

[61]  G. Bester,et al.  Mechanism of Efficient Proton Conduction in Diphosphoric Acid Elucidated via First-Principles Simulation and NMR. , 2015, The journal of physical chemistry. B.