Semidefinite relaxation for linear programs with equilibrium constraints

In this paper, we present a semidefinite programming (SDP) relaxation for linear programs with equilibrium constraints (LPECs) to be used in a branch-and-bound (B&B) algorithm. The procedure utilizes the global optimal solution of LPECs and was motivated by the B&B algorithm proposed by Bard and Moore for linear/quadratic bilevel programs, where complementarities are recursively enforced. We propose the use of the SDP relaxation to generate bounds at the nodes of the B&B tree. Computational results compare the quality of the bounds given by the SDP relaxation with the ones given by conventional linear programming relaxations.

[1]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[2]  Panos M. Pardalos,et al.  Global optimization of concave functions subject to quadratic constraints: An application in nonlinear bilevel programming , 1992, Ann. Oper. Res..

[3]  José Mario Martínez,et al.  On the solution of mathematical programming problems with equilibrium constraints , 2001, Math. Methods Oper. Res..

[4]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[5]  Jonathan F. Bard,et al.  Algorithms for nonlinear bilevel mathematical programs , 1991, IEEE Trans. Syst. Man Cybern..

[6]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[7]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[8]  Masakazu Kojima,et al.  Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets , 1999, SIAM J. Optim..

[9]  Samuel Burer,et al.  Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound , 2009, Comput. Optim. Appl..

[10]  Marcia Helena Costa Fampa,et al.  Bilevel optimization applied to strategic pricing in competitive electricity markets , 2008, Comput. Optim. Appl..

[11]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[12]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[13]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[14]  Samuel Burer,et al.  A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations , 2008, Math. Program..

[15]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..