Semidefinite relaxation for linear programs with equilibrium constraints
暂无分享,去创建一个
[1] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[2] Panos M. Pardalos,et al. Global optimization of concave functions subject to quadratic constraints: An application in nonlinear bilevel programming , 1992, Ann. Oper. Res..
[3] José Mario Martínez,et al. On the solution of mathematical programming problems with equilibrium constraints , 2001, Math. Methods Oper. Res..
[4] B. Borchers. CSDP, A C library for semidefinite programming , 1999 .
[5] Jonathan F. Bard,et al. Algorithms for nonlinear bilevel mathematical programs , 1991, IEEE Trans. Syst. Man Cybern..
[6] Michel X. Goemans,et al. Semideenite Programming in Combinatorial Optimization , 1999 .
[7] Jonathan F. Bard,et al. Practical Bilevel Optimization , 1998 .
[8] Masakazu Kojima,et al. Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets , 1999, SIAM J. Optim..
[9] Samuel Burer,et al. Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound , 2009, Comput. Optim. Appl..
[10] Marcia Helena Costa Fampa,et al. Bilevel optimization applied to strategic pricing in competitive electricity markets , 2008, Comput. Optim. Appl..
[11] Jonathan F. Bard,et al. A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..
[12] Jonathan F. Bard,et al. An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..
[13] José Fortuny-Amat,et al. A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .
[14] Samuel Burer,et al. A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations , 2008, Math. Program..
[15] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..