A Graph Calculus for Proving Intuitionistic Relation Algebraic Equations

In this work, we present a diagrammatic system in which diagrams based on graphs represent binary relations and reasoning on binary relations is performed by transformations on diagrams. We proved that if a diagram D1 can be transformed into a diagram D2 using the rules of our system, under a set Σ of hypotheses, then it is intuitionistically true that the relation defined by diagram D1 is a sub-relation of the one defined by diagram D2, under the hypotheses in Σ.

[1]  Jacques D. Fleuriot,et al.  Diagrammatically-Driven Formal Verification of Web-Services Composition , 2012, Diagrams.

[2]  Gunther Schmidt,et al.  Relations and Graphs: Discrete Mathematics for Computer Scientists , 1993 .

[3]  William McCune,et al.  Automated Deduction—CADE-14 , 1997, Lecture Notes in Computer Science.

[4]  Renata P. de Freitas,et al.  A note on proofs with graphs , 2008, Sci. Comput. Program..

[5]  Georg Struth,et al.  On Automating the Calculus of Relations , 2008, IJCAR.

[6]  Simon Foster,et al.  Automated Engineering of Relational and Algebraic Methods in Isabelle/HOL - (Invited Tutorial) , 2011, RAMiCS.

[7]  Frank M. Brown,et al.  Boolean reasoning - the logic of boolean equations , 1990 .

[8]  H. Andréka,et al.  The equational theory of union-free algebras of relations , 1995 .

[9]  Leon Henkin,et al.  The Logic of Equality , 1977 .

[10]  Paulo A. S. Veloso,et al.  On a Graph Calculus for Algebras of Relations , 2008, WoLLIC.

[11]  Alfred Tarski,et al.  Distributive and Modular Laws in the Arithmetic of Relation Algebras , 1953 .

[12]  APPLICATIONS OF RELATIONAL CALCULUS TO COMPUTER MATHEMATICS , 1988 .

[13]  Gavin Lowe,et al.  Proofs with Graphs , 1996, Sci. Comput. Program..

[14]  Paulo A. S. Veloso,et al.  On Positive Relational Calculi , 2007, Log. J. IGPL.

[15]  Paulo A. S. Veloso,et al.  A Calculus for Graphs with Complement , 2010, Diagrams.

[16]  David von Oheimb,et al.  RALL: Machine-Supported Proofs for Relation Algebra , 1997, CADE.

[17]  Paulo A. S. Veloso,et al.  On graph reasoning , 2009, Inf. Comput..

[18]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[19]  Calogero G. Zarba,et al.  Compiling dyadic first-order specifications into map algebra , 2003, Theor. Comput. Sci..

[20]  Andrea Formisano,et al.  A graphical approach to relational reasoning , 2001, Electron. Notes Theor. Comput. Sci..