On the Degree in Categories of Complexes of Fixed Size

We consider $$\Lambda $$Λ an artin algebra and $$n \ge 2$$n≥2. We study how to compute the left and right degrees of irreducible morphisms between complexes in a generalized standard Auslander–Reiten component of $${{\mathbf {C_n}}(\mathrm{proj}\, \Lambda )}$$Cn(projΛ) with length. We give conditions under which the kernel and the cokernel of irreducible morphisms between complexes in $${\mathbf {C_n}}(\mathrm{proj}\, \Lambda )$$Cn(projΛ) belong to such a category. For a finite dimensional hereditary algebra H over an algebraically closed field, we determine when an irreducible morphism has finite left (or right) degree and we give a characterization, depending on the degrees of certain irreducible morphisms, under which $${\mathbf {C_n}}(\mathrm{proj} \,H)$$Cn(projH) is of finite type.

[1]  Shiping Liu Auslander-Reiten theory in a Krull-Schmidt category , 2010 .

[2]  H. Merklen,et al.  Irreducible morphisms of categories of complexes , 2009 .

[3]  B. Raymundo The Category of Morphisms Between Projective Modules , 2004 .

[4]  D. Zacharia The preprojective partition for hereditary artin algebras , 1982 .

[5]  M. Platzeck,et al.  On the degree of irreducible morphisms , 2004 .

[6]  Patrick Le Meur,et al.  Degrees of irreducible morphisms and finite‐representation type , 2009, J. Lond. Math. Soc..

[7]  Claudia Chaio On the Harada and Sai bound , 2012 .

[8]  A. Skowroński Generalized standard Auslander-Reiten components , 1994 .

[9]  Peter Gabriel,et al.  Covering spaces in representation-theory , 1982 .

[10]  Sonia Trepode,et al.  The composite of irreducible morphisms in standard components , 2010 .

[11]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[12]  M. J. S. Salorio,et al.  Almost split sequences for complexes of fixed size , 2005 .

[13]  P. Webb REPRESENTATION THEORY OF ARTIN ALGEBRAS (Cambridge Studies in Advanced Mathematics 36) By Maurice Auslander, Idun Reiten and Sverre O. Smalø: 423 pp., £50.00, ISBN 0 521 41134 3 (Cambridge University Press, 1995). , 1997 .

[14]  M. J. S. Salorio,et al.  Irreducible morphisms in the bounded derived category , 2011 .

[15]  María José Souto-Salorio,et al.  On Sectional Paths in a Category of Complexes of Fixed Size , 2017 .