Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2

A thermodynamic solution model is developed for minerals whose compositions lie in the two binary systems Mg2SiO4-Fe2SiO4 and Mg2Si2O6-Fe2Si2O6. The formulation makes explicit provision for nonconvergent ordering of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxenes and non-zero Gibbs energies of reciprocal ordering reactions in both olivine and orthopyroxene. The calibration is consistent with (1) constraints provided by available experimental and natural data on the Fe-Mg exchange reaction between olivine and orthopyroxene ± quartz, (2) site occupancy data on orthopyroxenes including both crystallographic refinements and Mössbauer spectroscopy, (3) enthalpy of solution data on olivines and orthopyroxenes and enthalpy of disordering data on orthopyroxene, (4) available data on the temperature and ordering dependence of the excess volume of orthopyroxene solid solutions, and (5) direct activity-composition determinations of orthopyroxene and olivine solid solutions at elevated temperatures. Our analysis suggests that the entropies of the exchange [Mg(M2)Fe(M1)⇔Fe(M2)Mg(M1)] and reciprocal ordering reactions [Mg(M2)Mg(M1)+ Fe(M2)Fe(M1)⇔Fe(M2)Mg(M1)+Mg(M2)Fe(M1)] cannot differ significantly (± 1 cal/K) from zero over the temperature range of calibration (400°–1300° C). Consideration of the mixing properties of olivine-orthopyroxene solid solutions places tight constraints on the standard state thermodynamic quantities describing Fe-Mg exchange reactions involving olivine, orthopyroxene, pyralspite garnets, aluminate spinels, ferrite spinels and biotite. These constraints are entirely consistent with the standard state properties for the phasesα-quartz,β-quartz, orthoenstatite, clinoenstatite, protoenstatite, fayalite, ferrosilite and forsterite which were deduced by Berman (1988) from an independent analysis of phase equilibria and calorimetric data. In conjunction with these standard state properties, the solution model presented in this paper provides a means of evaluating an internally consistent set of Gibbs energies of mineral solid solutions in the system Mg2SiO4-Fe2SiO4-SiO2 over the temperature range 0–1300° C and pressure interval 0.001–50 kbars. As a consequence of our analysis, we find that the excess Gibbs energies associated with mixing of Fe and Mg in (Fe, Mg)2SiO4 olivines, (Fe, Mg)3Al2Si3O12 garnets, (Fe, Mg)Al2O4 and (Fe, Mg)Fe2O4 spinels, and K(Mg, Fe)3AlSi3O10(OH)2 biotites may be satisfactory described, on a macroscopic basis, with symmetric regular solution type parameters having values of 4.86±0.12 (olivine), 3.85±0.09 (garnet), 1.96±0.13 (spinel), and 3.21±0.29 kcals/gfw (biotite). Applications of the proposed solution model demonstrate the sensitivity of petrologic modeling to activity-composition relations of olivine-orthopyroxene solutions. We explore the consequences of estimating the activity of silica in melts forming in the mantle and we develop a graphical geothermometer/geobarometer for metamorphic assemblages of olivine+orthopyroxene+quartz. Quantitative evaluation of these results suggests that accurate and realistic estimates of silica activity in melts derived from mantle source regions,P-T paths of metamorphism and other intensive variables of petrologic interest await further refinements involving the addition of “trace” elements (Al3+ and Fe3+) to the thermodynamic formulation for orthopyroxenes.

[1]  B. Wood,et al.  Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe-Mg mixing properties in garnet , 1989 .

[2]  C. Klein,et al.  High-grade metamorphic Archean banded iron-formations, Western Australia; assemblages with coexisting pyroxenes + or - fayalite , 1981 .

[3]  J. Larimer Experimental studies on the system Fe-MgO-SiO2-O2 and their bearing on the petrology of chondritic meteorites , 1968 .

[4]  S. Banno,et al.  Petrology of peridotite and garnet clinopyroxenite of the Mt. Higasi-Akaisi mass, central Sikoku, Japan — Subsolidus relation of anhydrous phases , 1973 .

[5]  R. A. Robie,et al.  Heat capacities and entropies of Mg 2 SiO 4 , Mn 2 SiO 4 , and Co 2 SiO 4 between 5 and 380 K , 1982 .

[6]  W. Bragg,et al.  The effect of thermal agitation on atomic arrangement in alloys , 1935 .

[7]  S. Saxena,et al.  Mg2+ -Fe2+ ORDER-DISORDER AND THE THERMODYNAMICS OF THE ORTHO­ PYROXENE CRYSTALLINE SOLUTION , 1971 .

[8]  A. Muan,et al.  Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”SiO2 , 1967 .

[9]  D. Walker,et al.  Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids , 1987 .

[10]  R. Sack,et al.  Thermodynamic properties of Fe-Mg titaniferous magnetite spinels , 1987 .

[11]  P. Richet,et al.  Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K , 1982 .

[12]  O. Nishizawa,et al.  Iron (II) -magnesium exchange equilibrium between olivine and calcium˗free pyroxene over a temperature range 800° C to 1 300° C , 1974 .

[13]  R. Berman,et al.  Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-Sio2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation , 1985 .

[14]  T. G. Sahama Order-disorder in Natural Nepheline Solid Solutions , 1962 .

[15]  D. R. Torgeson,et al.  Some Examples of the Application of Thermochemistry to Petrology , 1949, The Journal of Geology.

[16]  P. Roeder,et al.  The distribution of Mg and Fe (super 2+) between olivine and spinel at 1300 degrees C , 1984 .

[17]  Paula M. Davidson,et al.  Thermodynamic analysis of quadrilateral pyroxenes , 1985 .

[18]  O. J. Kleppa,et al.  Thermochemistry of forsterite-fayalite olivine solutions , 1981 .

[19]  E. Essene,et al.  Evaluation of Coexisting Garnet-Biotite, Garnet-Clinopyroxene, and Other Mg-Fe Exchange Thermometers in Adirondack Granulites , 1980 .

[20]  B. Wood The solubility of alumina in orthopyroxene coexisting with garnet , 1974 .

[21]  T. Miyano,et al.  Fluid behavior and phase relations in the system Fe-Mg-Si-C-O-H; application to high grade metamorphism of iron-formations , 1986 .

[22]  D. Vaniman,et al.  Contact-metamorphic effects of the Stillwater Complex, Montana; the concordant iron formation , 1980 .

[23]  M. Ghiorso Modeling magmatic systems; thermodynamic relations , 1987 .

[24]  A. Albee,et al.  Correlation of Mg/Fe partitioning between garnet and biotite with 18 O/ 16 O partitioning between quartz and magnetite , 1977 .

[25]  A. Boettcher,et al.  THE EFFECT OF MANGANESE ON OLIVINE-QUARTZ-ORTHOPYROXENE STABILITY , 1980 .

[26]  R. Sack Reaction skarns between quartz-bearing and olivine-bearing rocks , 1982 .

[27]  R. Sack,et al.  Experimental Petrology of Melilite Nephelinites , 1988 .

[28]  A. Boettcher,et al.  Experimental investigations and geological applications of orthopyroxene geobarometry , 1981 .

[29]  T. Katsura,et al.  Activity Measurements in Orthosilicate and Metasilicate Solid Solutions. I. Mg2SiO4-Fe2SiO4 and MgSiO3-FeSiO3 at 1204°C , 1968 .

[30]  O. J. Kleppa,et al.  Enthalpy of mixing of synthetic almandine-grossular and almandine-pyrope garnets from high-temperature solution calorimetry , 1987 .

[31]  Paula M. Davidson,et al.  Thermodynamic analysis of pyroxene-olivine-quartz equilibria in the system CaO-MgO-FeO-SiO 2 , 1989 .

[32]  R. A. Robie,et al.  High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite and wollastonite , 1985 .

[33]  R. Berman,et al.  Derivation of Internally-Consistent Thermodynamic Data by the Technique of Mathematical Programming: a Review with Application the System MgO-SiO2-H2O , 1986 .

[34]  C. Johnson,et al.  The formation of garnet in olivine-bearing metagabbros from the Adirondacks , 1982 .

[35]  S. Saxena,et al.  Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry , 1984 .

[36]  J. H. Berg,et al.  Petrology of a xenolith of ferro-aluminous gneiss from the Nain complex , 1985 .

[37]  M. Ghiorso,et al.  Modeling magmatic systems; petrologic applications , 1987 .

[38]  F. Spear,et al.  Experimental calibration of the partitioning of Fe and Mg between biotite and garnet , 1978 .

[39]  O. J. Kleppa,et al.  Thermochemistry of (Fe2+, Mg)SiO3 orthopyroxene , 1983 .

[40]  G. W. Fisher,et al.  Cell dimensions and X-ray determinative curve for synthetic Mg-Fe olivines , 1969 .

[41]  E. Essene,et al.  A critical evaluation of two-pyroxene thermometry in Adirondack granulites , 1979 .

[42]  J. Lehmann,et al.  Experimental and theoretical study of (Fe2+, Mg)(Al, Fe3+)2O4 spinels: Activity-composition relationships, miscibility gaps, vacancy contents , 1986 .

[43]  J. Ferry A comparative study of geothermometers and geobarometers in pelitic schists from South-central Maine , 1980 .

[44]  J. Mathieu,et al.  Thermodynamic properties of the forsterite-fayalite (Mg2SiO4-Fe2SiO4) solid solution. determination of heat of formation , 1981 .

[45]  R. Sack Spinels as petrogenetic indicators: Activity-composition relations at low pressures , 1982 .

[46]  Y. Syono,et al.  Unit cell dimensions of some synthetic orthopyroxene group solid solutions , 1968 .

[47]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[48]  R. C. Newton,et al.  The compositions of coexisting pyroxenes and garnet in the system CaO-MgO-Al2O3-SiO2 at 900°–1,100°C and high pressures , 1981 .

[49]  A. Boettcher,et al.  Reinvestigation and application of olivine-quartz-orthopyroxene barometry , 1980 .

[50]  F. Spear The Gibbs method and Duhem's theorem: The quantitative relationships among P, T, chemical potential, phase composition and reaction progress in igneous and metamorphic systems , 1988 .

[51]  F. Stewart,et al.  XII.—Petrology and Petrogenesis of some Garnetiferous Peridotites , 1963, Transactions of the Royal Society of Edinburgh.

[52]  S. Harley The Solubility of Alumina in Orthopyroxene Coexisting with Garnet in FeO-MgO—Al2O3—SiO2 and CaO—FeO—MgO—Al2O3—SiO2 , 1984 .

[53]  B. Wood Thermodynamics of multicomponent systems containing several solid solutions , 1987 .

[54]  R. Sack Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines , 1980 .

[55]  T. Frisch,et al.  Iron- and manganese-rich minor intrusions emplaced under late-orogenic conditions in the proterozoic of South Greenland , 1976 .

[56]  P. M. Orville,et al.  The partitioning of cations between coexisting single- and multi-site phases with application to the assemblages: orthopyroxene-clinopyroxene and orthopyroxene-olivine , 1969 .

[57]  J. Besancon Rate of cation disordering in orthopyroxenes , 1981 .

[58]  R. A. Robie,et al.  Low-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite , 1985 .

[59]  F. Seifert,et al.  Ferric iron in orthopyroxene: a Mössbauer spectroscopic study , 1978 .

[60]  J. Ferry A Biotite Isograd in South-Central Maine, U.S.A.: Mineral Reactions, Fluid Transfer, and Heat Transfer , 1984 .

[61]  I. Carmichael,et al.  Fe2⇄Mg2 and TiAl2⇄MgSi2 exchange reactions between clinopyroxenes and silicate melts , 1984 .

[62]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[63]  G. Adams,et al.  The olivine — clinopyroxene geobarometer: experimental results in the CaO-FeO-MgO-SiO2 system , 1986 .

[64]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[65]  H. Taylor,et al.  Oxygen and hydrogen isotope studies of contact metamorphism in the Santa Rosa Range, Nevada and other areas , 1969 .

[66]  Douglas Smith Stability of the assemblage iron-rich orthopyroxene-olivine-quartz , 1971 .

[67]  F. Gibb,et al.  Geothermometry of garnet lherzolite nodules with special reference to those from the kimberlites of Northern Lesotho , 1980 .

[68]  H. Ramberg,et al.  The Distribution of Fe++ and Mg++ in Coexisting Olivines and Pyroxenes , 1951, The Journal of Geology.

[69]  H. Fujisawa,et al.  Olivine‐spinel solid solution equilibria in the system Mg2SiO4‐Fe2SiO4 , 1968 .

[70]  F. R. Boyd,et al.  Evaluation of thermobarometers for garnet peridotites , 1984 .

[71]  S. Harley Comparison of the Garnet—Orthopyroxene Geobarometer with Recent Experimental Studies, and Applications to Natural Assemblages , 1984 .

[72]  A. Navrotsky,et al.  Cation distributions and thermodynamic properties of binary spinel solid solutions , 1984 .

[73]  R. K. Springer Contact Metamorphosed Ultramafic Rocks in the Western Sierra Nevada Foothills, California , 1974 .

[74]  O. J. Kleppa,et al.  Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry , 1984 .

[75]  Paula M. Davidson,et al.  Ca-Fe-Mg olivines: phase relations and a solution model , 1984 .

[76]  O. J. Kleppa,et al.  Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry , 1975 .

[77]  J. H. Berg Regional geobarometry in the contact aureoles of the anorthositic Nain complex , 1977 .

[78]  D. Ebel,et al.  Tennahedrite Thermochemistry and Metal Zoning , 1987 .

[79]  J. Walther,et al.  Volatile production and transport in regional metamorphism , 1982 .

[80]  L. Perchuk,et al.  Nepheline—Alkali Feldspar Equilibria: I. Experimental Data and Thermodynamic Calculations , 1978 .

[81]  Raymond L. Orr,et al.  High Temperature Heat Contents of Magnesium Orthosilicate and Ferrous Orthosilicate , 1953 .

[82]  F. R. Boyd,et al.  A pyroxene geotherm , 1973 .

[83]  L. Anovitz,et al.  Order-disorder experiments on orthopyroxenes; implications for the orthopyroxene geospeedometer , 1988 .

[84]  T. Fujii,et al.  Petrology of ultramafic nodules from West Kettle River, near Kelowna, Southern British Columbia , 1982 .

[85]  Y. Matsui,et al.  Thermodynamic analyses of equilibria involving olivine, orthopyroxene and garnet , 1983 .

[86]  T. Peters Distribution of Mg, Fe, Al, Ca and Na in coexisting olivine, orthopyroxene and clinopyroxene in the Totalp serpentinite (Davos, Switzerland) and in the Alpine metamorphosed Malenco serpentinite (N. Italy) , 1968 .

[87]  E. Perkins,et al.  GEOe-CALC; software for calculation and display of P-T-X phase diagrams , 1987 .

[88]  D. A. Carswell Picritic magma — residual dunite relationships in garnet peridotite at Kalskaret near Tafjord, South Norway , 1968 .

[89]  Selected X-ray crystallographic data, molar volumes, and densities of minerals and related substances , 1967 .

[90]  Y. Matsui,et al.  Partitioning of Fe2+ and Mg2+ between olivine and garnet , 1977 .

[91]  M. Ghiorso,et al.  The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables , 1983 .

[92]  F. Seifert,et al.  Stability of the assemblage orthopyroxene-sillimanite-quartz in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O , 1981 .

[93]  A. C. Turnock,et al.  Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes , 1973 .