Strongly regular graphs and spin models for the Kauffman polynomial

We study spin models for invariants of links as defined by Jones [22]. We consider the two algebras generated by the weight matrices of such models under ordinary or Hadamard product and establish an isomorphism between them. When these algebras coincide they form the Bose-Mesner algebra of a formally self-dual association scheme. We study the special case of strongly regular graphs, which is associated to a particularly interesting link invariant, the Kauffman polynomial [27]. This leads to a classification of spin models for the Kauffman polynomial in terms of formally self-dual strongly regular graphs with strongly regular subconstituents [7]. In particular we obtain a new model based on the Higman-Sims graph [17].

[1]  R. C. Bose,et al.  On Linear Associative Algebras Corresponding to Association Schemes of Partially Balanced Designs , 1959 .

[2]  D. Winge,et al.  Structural and functional diversity of copper-metallothioneins from the American lobster Homarus americanus. , 1989, Journal of inorganic biochemistry.

[3]  Kenneth C. Millett,et al.  A new polynomial invariant of knots and links , 1985 .

[4]  Charles C. Sims,et al.  A simple group of order 44,352,000 , 1968 .

[5]  Jozef H. Przytycki,et al.  Invariants of links of Conway type , 1988, 1610.06679.

[6]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[7]  A. Munemasa,et al.  Orthogonal pairs of ‐subalgebras and association schemes , 1991 .

[8]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[9]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[10]  Vaughan F. R. Jones,et al.  On knot invariants related to some statistical mechanical models , 1989 .

[11]  A. S. Lipson Some more states models for link invariants , 1992 .

[12]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[13]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[14]  V. Jones,et al.  Metaplectic link invariants , 1989 .

[15]  W. Lickorish Some link-polynomial relations , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  J. H. Lint,et al.  Graph theory, coding theory, and block designs , 1975 .

[17]  W. B. R. Lickorish,et al.  Polynomials for Links , 1988 .

[18]  Peter J. Cameron,et al.  Strongly Regular Graphs Having Strongly Regular Subconstituents , 1978 .

[19]  M. Martellini,et al.  Quantum field theory and link invariants , 1990 .

[20]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[21]  W. Lickorish,et al.  The New Polynomial Invariants of Knots and Links. , 1988 .

[22]  Tetsuo Deguchi,et al.  Exactly solvable models and knot theory , 1989 .

[23]  Vaughan F. R. Jones,et al.  On a certain value of the Kauffman polynomial , 1989 .

[24]  Louis H. Kauffman,et al.  New invariants in the theory of knots , 1988 .

[25]  Pierre de la Harpe,et al.  Graph Invariants Related to Statistical Mechanical Models: Examples and Problems , 1993, J. Comb. Theory, Ser. B.

[26]  W. T. Tutte,et al.  On dichromatic polynomials , 1967 .

[27]  François Jaeger,et al.  On the Kauffman Polynomial of Planar Matroids , 1992 .

[28]  J. Maillard,et al.  Integrable Coxeter groups , 1991 .

[29]  Louis H. Kauffman,et al.  An invariant of regular isotopy , 1990 .