A variational phase-field model for hydraulic fracturing in porous media

[1]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[2]  A. Bunger,et al.  Lattice simulation of laboratory hydraulic fracture containment in layered reservoirs , 2018, Computers and Geotechnics.

[3]  Stefano Vidoli,et al.  Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples , 2017, International Journal of Mechanical Sciences.

[4]  Jean-Jacques Marigo,et al.  Crack nucleation in variational phase-field models of brittle fracture , 2018 .

[5]  Erwan Tanné,et al.  Variational phase-field models from brittle to ductile fracture : nucleation and propagation , 2017 .

[6]  Liang Xia,et al.  Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media , 2017 .

[7]  N. Watanabe,et al.  Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions , 2017 .

[8]  R. Juanes,et al.  Phase field model of fluid‐driven fracture in elastic media: Immersed‐fracture formulation and validation with analytical solutions , 2017 .

[9]  Wolfgang Ehlers,et al.  A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing , 2017 .

[10]  Y. Heider,et al.  A phase-field modeling approach of hydraulic fracture in saturated porous media , 2017 .

[11]  Mary F. Wheeler,et al.  Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches , 2016, J. Comput. Appl. Math..

[12]  Daniel Guilbaud,et al.  Gradient damage modeling of brittle fracture in an explicit dynamics context , 2016 .

[13]  C. Landis,et al.  Phase-field modeling of hydraulic fracture , 2016 .

[14]  J. Marigo,et al.  An overview of the modelling of fracture by gradient damage models , 2016 .

[15]  Hani S. Mitri,et al.  Influence of fracture-induced weakening on coal mine gateroad stability , 2016 .

[16]  Blaise Bourdin,et al.  A variational hydraulic fracturing model coupled to a reservoir simulator , 2016 .

[17]  Mary F. Wheeler,et al.  Fluid-Filled Fracture Propagation With a Phase-Field Approach and Coupling to a Reservoir Simulator , 2016 .

[18]  Christian Miehe,et al.  Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media , 2016 .

[19]  P. Cundall,et al.  Application of particle and lattice codes to simulation of hydraulic fracturing , 2016 .

[20]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[21]  P. Sanz,et al.  Fully-Coupled 3D Hydraulic Fracture Models: Development, Validation, and Application to O&G Problems , 2016 .

[22]  Mary F. Wheeler,et al.  Phase-field modeling of a fluid-driven fracture in a poroelastic medium , 2015, Computational Geosciences.

[23]  Adrian J. Lew,et al.  Universal Meshes for the Simulation of Brittle Fracture and Moving Boundary Problems , 2015, 1510.05181.

[24]  C. Miehe,et al.  Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture , 2015 .

[25]  Mary F. Wheeler,et al.  A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach , 2015 .

[26]  L. Lorenzis,et al.  Phase-field modeling of ductile fracture , 2015, Computational Mechanics.

[27]  M. Wheeler,et al.  A quasi-static phase-field approach to pressurized fractures , 2015 .

[28]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[29]  Mukul M. Sharma,et al.  A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach , 2015 .

[30]  Carlos Armando Duarte,et al.  Simulation of non‐planar three‐dimensional hydraulic fracture propagation , 2014 .

[31]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[32]  Jean-Jacques Marigo,et al.  Morphogenesis and propagation of complex cracks induced by thermal shocks , 2013 .

[33]  B. Bourdin,et al.  Crack patterns obtained by unidirectional drying of a colloidal suspension in a capillary tube: experiments and numerical simulations using a two-dimensional variational approach , 2013, International Journal of Fracture.

[34]  Elizaveta Gordeliy,et al.  Coupling schemes for modeling hydraulic fracture propagation using the XFEM , 2013 .

[35]  Blaise Bourdin,et al.  A VARIATIONAL APPROACH TO THE MODELING AND NUMERICAL SIMULATION OF HYDRAULIC FRACTURING UNDER IN-SITU STRESSES , 2013 .

[36]  Andro Mikelić,et al.  Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.

[37]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[38]  Benoît Carrier,et al.  Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model , 2012 .

[39]  Blaise Bourdin,et al.  A Variational Approach to the Numerical Simulation of Hydraulic Fracturing , 2012 .

[40]  Ruben Juanes,et al.  Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits , 2011 .

[41]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[42]  Christopher J. Larsen,et al.  A time-discrete model for dynamic fracture based on crack regularization , 2011 .

[43]  Dmitry I. Garagash,et al.  Plane-Strain Propagation of a Fluid-Driven Crack in a Permeable Rock with Fracture Toughness , 2010 .

[44]  Michael J. Mayerhofer,et al.  What Is Stimulated Reservoir Volume , 2010 .

[45]  J. Gottschling Marcellus Net Fracturing Pressure Analysis , 2010 .

[46]  D. Owen,et al.  Modelling of hydro‐fracture flow in porous media , 2010 .

[47]  Jon E. Olson,et al.  Numerical Modeling of Multistranded-Hydraulic-Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures , 2009 .

[48]  R. Pasikki,et al.  Hydraulic Stimulation Techniques Applied to Injection Wells at the Salak Geothermal Field, Indonesia , 2009 .

[49]  Ignacio Carol,et al.  Coupled HM analysis using zero‐thickness interface elements with double nodes. Part I: Theoretical model , 2008 .

[50]  Ignacio Carol,et al.  Coupled HM analysis using zero‐thickness interface elements with double nodes—Part II: Verification and application , 2008 .

[51]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[52]  B. Lecampion An extended finite element method for hydraulic fracture problems , 2009 .

[53]  A. Cheng,et al.  A 3-D study of the effects of thermomechanical loads on fracture slip in enhanced geothermal reservoirs , 2007 .

[54]  Jose Adachi,et al.  Computer simulation of hydraulic fractures , 2007 .

[55]  Josep María Segura Serra,et al.  Coupled hm analysis using zero-thickness interface elements with double nodes , 2007 .

[56]  Dmitry I. Garagash,et al.  Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness , 2006 .

[57]  Ernst Huenges,et al.  Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications , 2005 .

[58]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[59]  Ignacio Carol,et al.  On zero‐thickness interface elements for diffusion problems , 2004 .

[60]  Emmanuel M Detournay,et al.  The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid , 2003, Journal of Fluid Mechanics.

[61]  Daniel R. Burns,et al.  Reservoir Simulation with the Finite Element Method Using Biot Poroelastic Approach , 2003 .

[62]  Lawrence C. Murdoch,et al.  Forms of Hydraulic Fractures in Shallow Fine-Grained Formations , 2002 .

[63]  Jérôme Jaffré,et al.  Modeling fractures as interfaces for flow and transport in porous media , 2001 .

[64]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[65]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[66]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[67]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[68]  L. Evans Measure theory and fine properties of functions , 1992 .

[69]  R. C. Kerr,et al.  Fluid‐mechanical models of crack propagation and their application to magma transport in dykes , 1991 .

[70]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[71]  Thomas J. Boone,et al.  A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .

[72]  Nobuo Morita,et al.  Theory of lost circulation pressure , 1990 .

[73]  A. Ingraffea,et al.  An investigation of poroelastic effects related to hydraulic fracture propagation in rock and stress measurement techniques , 1989 .

[74]  A. Settari,et al.  A New General Model of Fluid Loss in Hydraulic Fracturing , 1985 .

[75]  D. A. Spence,et al.  Magma‐driven propagation of cracks , 1985 .

[76]  Norman R. Warpinski,et al.  Influence of Geologic Discontinuities on Hydraulic Fracture Propagation (includes associated papers 17011 and 17074 ) , 1984 .

[77]  I. N. Sneddon,et al.  Crack Problems in the Classical Theory of Elasticity , 1969 .

[78]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[79]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .