Enhancing the water stability of Al-MIL-101-NH2 via postsynthetic modification.

The resistance of metal-organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al-MIL-101-NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long-term stability of Al-MIL-101-URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al-MIL-101-URPh decomposed at least 12-times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2 O sorption measurements, powder X-ray diffraction, thermogravimetric and chemical analysis as well as solid-state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m(2)  g(-1) for Al-MIL-101-URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity-dependent uptake of Al-MIL-101-URPh is slowed and occurs at higher relative humidity values. In combination with (1) H-(27) Al D-HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.

[1]  S. Wuttke,et al.  Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study. , 2014, Chemical communications.

[2]  David Farrusseng,et al.  Water adsorption in MOFs: fundamentals and applications. , 2014, Chemical Society reviews.

[3]  D. Farrusseng,et al.  Structure–property relationships of water adsorption in metal–organic frameworks , 2014 .

[4]  A. Harris,et al.  Dichotomous adsorption behaviour of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al) , 2014 .

[5]  Alexander V. Neimark,et al.  Density functional theory methods for characterization of porous materials , 2013 .

[6]  T. Bein,et al.  Highly sensitive and selective fluoride detection in water through fluorophore release from a metal-organic framework , 2013, Scientific Reports.

[7]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[8]  O. Miljanić,et al.  Superhydrophobic perfluorinated metal-organic frameworks. , 2013, Chemical communications.

[9]  T. A. Hatton,et al.  Aldehyde Self-Condensation Catalysis by Aluminum Aminoterephthalate Metal–Organic Frameworks Modified with Aluminum Isopropoxide , 2013 .

[10]  S. Jhung,et al.  Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. , 2013, Journal of hazardous materials.

[11]  Krista S. Walton,et al.  Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[12]  M. Hartmann,et al.  Amino-functionalized basic catalysts with MIL-101 structure , 2012 .

[13]  Krista S. Walton,et al.  Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[14]  S. Jhung,et al.  Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption , 2012 .

[15]  Christine M. Straut,et al.  Alkylaminopyridine-modified aluminum aminoterephthalate metal-organic frameworks as components of reactive self-detoxifying materials. , 2012, ACS applied materials & interfaces.

[16]  S. Kitagawa,et al.  Effect of functional groups in MIL-101 on water sorption behavior , 2012 .

[17]  J. Lee,et al.  MIL-100(V) – A mesoporous vanadium metal organic framework with accessible metal sites , 2012 .

[18]  Rainer Herges,et al.  Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. , 2012, Dalton transactions.

[19]  Christian Serre Superhydrophobie in hoch fluorierten porösen Metall‐organischen Gerüsten , 2012 .

[20]  C. Serre Superhydrophobicity in highly fluorinated porous metal-organic frameworks. , 2012, Angewandte Chemie.

[21]  Krista S. Walton,et al.  Impact of Alkyl-Functionalized BTC on Properties of Copper-Based Metal–Organic Frameworks , 2012 .

[22]  C. Janiak,et al.  MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application , 2012 .

[23]  P. Voort,et al.  Vanadium Analogues of Nonfunctionalized and Amino‐Functionalized MOFs with MIL‐101 Topology – Synthesis, Characterization, and Gas Sorption Properties , 2012 .

[24]  Krista S. Walton,et al.  Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks , 2012 .

[25]  S. Jhung,et al.  Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. , 2012, Journal of hazardous materials.

[26]  Yan Liu,et al.  Mesoporous metal-organic framework materials. , 2012, Chemical Society reviews.

[27]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[28]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[29]  J. Lee,et al.  Energy‐Efficient Dehumidification over Hierachically Porous Metal–Organic Frameworks as Advanced Water Adsorbents , 2012, Advanced materials.

[30]  Jared B. DeCoste,et al.  Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition. , 2012, Journal of the American Chemical Society.

[31]  V. Nesterov,et al.  Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. , 2011, Journal of the American Chemical Society.

[32]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[33]  Zhong Li,et al.  Tuning the moisture stability of metal-organic frameworks by incorporating hydrophobic functional groups at different positions of ligands. , 2011, Chemical communications.

[34]  J. Long,et al.  High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites , 2011 .

[35]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[36]  T. Dingemans,et al.  Methyl modified MOF-5: a water stable hydrogen storage material. , 2011, Chemical communications.

[37]  C. Serre,et al.  Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. , 2011, Chemical communications.

[38]  Stefan K. Henninger,et al.  Water Adsorption Characteristics of MIL‐101 for Heat‐Transformation Applications of MOFs , 2011 .

[39]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[40]  C. Hu,et al.  Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups. , 2010, Chemical communications.

[41]  M. Thommes Physical Adsorption Characterization of Nanoporous Materials , 2010 .

[42]  Amy J. Cairns,et al.  Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF , 2010 .

[43]  Seth M. Cohen,et al.  Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. , 2010, Journal of the American Chemical Society.

[44]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[45]  Jeffrey R. Long,et al.  Hydrogen storage in water-stable metal–organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate , 2010 .

[46]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[47]  A. Benin,et al.  Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. , 2009, Journal of the American Chemical Society.

[48]  David Farrusseng,et al.  Metall‐organische Gerüste für die Katalyse , 2009 .

[49]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[50]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[51]  Daniel Gunzelmann,et al.  [Al4(OH)2(OCH3)4(H2N-bdc)3] x xH(2)O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. , 2009, Angewandte Chemie.

[52]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[53]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[54]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[55]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[56]  Seth M. Cohen,et al.  Covalent modification of a metal-organic framework with isocyanates: probing substrate scope and reactivity. , 2008, Chemical communications.

[57]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[58]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[59]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[60]  C. Serre,et al.  First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101 , 2005 .

[61]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[62]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[63]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[64]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[65]  Heinrich Remy,et al.  Lehrbuch der anorganischen Chemie , 1900, Nature.