Quantum Edge Detection for Image Segmentation in Optical Environments

A quantum edge detector for image segmentation in optical environments is presented in this work. A Boolean version of the same detector is presented too. The quantum version of the new edge detector works with computational basis states, exclusively. This way, we can easily avoid the problem of quantum measurement retrieving the result of applying the new detector on the image. Besides, a new criterion and logic based on projections onto vertical axis of Bloch's Sphere exclusively are presented too. This approach will allow us: 1) a simpler development of logic quantum operations, where they will closer to those used in the classical logic operations, 2) building simple and robust classical-to-quantum and quantum-to-classical interfaces. Said so far is extended to quantum algorithms outside image processing too. In a special section on metric and simulations, a new metric based on the comparison between the classical and quantum versions algorithms for edge detection of images is presented. Notable differences between the results of classical and quantum versions of such algorithms (outside and inside of quantum computer, respectively) show the existence of implementation problems involved in the experiment, and that they have not been properly modeled for optical environments. However, although they are different, the quantum results are equally valid. The latter is clearly seen in the computer simulations

[1]  Karl Svozil Quantum interfaces , 2000 .

[2]  Sougato Bose,et al.  Storing, processing, and retrieving an image using quantum mechanics , 2003, SPIE Defense + Commercial Sensing.

[3]  R. Feynman Simulating physics with computers , 1999 .

[4]  David P. DiVincenzo,et al.  Quantum Computing: A Short Course from Theory to Experiment , 2004 .

[5]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[7]  Kaoru Hirota,et al.  A flexible representation of quantum images for polynomial preparation, image compression, and processing operations , 2011, Quantum Inf. Process..

[8]  S. E. Venegas-Andraca,et al.  Storing Images in Entangled Quantum Systems , 2004 .

[9]  Paulo S. R. Diniz,et al.  Adaptive Filtering: Algorithms and Practical Implementation , 1997 .

[10]  R. J. Schalko Digital Image Processing and Computer Vision , 1989 .

[11]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[12]  T. Dass,et al.  Measurements and Decoherence , 2005 .

[13]  N. P. Landsman Between classical and quantum , 2005 .

[14]  E. Brookner Tracking and Kalman Filtering Made Easy , 1998 .

[15]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[16]  L. Spector,et al.  Quantum circuits for OR and AND of ORs , 2000 .

[17]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[18]  A. Berthiaume Quantum computation , 1998 .

[19]  R. Siri,et al.  Decoherence in the quantum walk on the line , 2004, quant-ph/0403192.

[20]  Alexander G. Loukianov,et al.  Discrete-Time High Order Neural Control - Trained with Kaiman Filtering , 2010, Studies in Computational Intelligence.

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[23]  Mario Mastriani,et al.  Enhanced Directional Smoothing Algorithm for Edge-Preserving Smoothing of Synthetic-Aperture Radar Images , 2016, ArXiv.

[24]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[25]  A. Russell,et al.  Decoherence in quantum walks on the hypercube , 2005, quant-ph/0501169.

[26]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[27]  Danilo P. Mandic,et al.  Class of Widely Linear Complex Kalman Filters , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[28]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[29]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[30]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[31]  William E. Baylis,et al.  Quantum/Classical Interface: A Geometric Approach from the Classical Side , 2004 .

[32]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[33]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[34]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[35]  William K. Pratt,et al.  Digital image processing, 2nd Edition , 1991, A Wiley-Interscience publication.

[36]  José Ignacio Latorre,et al.  Image compression and entanglement , 2005, ArXiv.

[37]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[38]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[39]  Salvador E. Venegas-Andraca,et al.  Processing images in entangled quantum systems , 2010, Quantum Inf. Process..

[40]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[41]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[42]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[43]  W. Zurek Decoherence and the Transition from Quantum to Classical—Revisited , 2003, quant-ph/0306072.

[44]  Mark F. Bocko,et al.  Isolation Structures for the Solid-State Quantum-to-Classical Interface , 2001, OFC 2001.

[45]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[46]  G. Alagic,et al.  Decoherence in quantum walks on the hypercube (6 pages) , 2005 .

[47]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[48]  Viv Kendon,et al.  Decoherence can be useful in quantum walks , 2002, quant-ph/0209005.

[49]  Mario Mastriani Optimal Estimation of States in Quantum Image Processing , 2014, 1406.5121.

[50]  Sheng-Tzong Cheng,et al.  Quantum switching and quantum merge sorting , 2006, IEEE Trans. Circuits Syst. I Regul. Pap..

[51]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[52]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[53]  W. E. Baylis,et al.  Quantum/Classical Interface: Fermion Spin , 2007, 0710.3144.

[54]  Stamatios V. Kartalopoulos,et al.  Understanding neural networks and fuzzy logic , 1995 .

[55]  Salvador Elías Venegas-Andraca,et al.  Discrete quantum walks and quantum image processing , 2005 .

[56]  Hao Ying,et al.  Essentials of fuzzy modeling and control , 1995 .

[57]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[58]  J. Byrnes Computational noncommutative algebra and applications , 2005 .

[59]  Viv Kendon,et al.  Decoherence in Discrete Quantum Walks , 2004 .

[60]  Lotfi A. Zadeh,et al.  MAKING COMPUTERS THINK LIKE PEOPLE , 1984 .

[61]  Mario Mastriani Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising , 2008 .

[62]  Marek A. Perkowski,et al.  Efficient Implementation of Controlled Operations for Multivalued Quantum Logic , 2009, 2009 39th International Symposium on Multiple-Valued Logic.

[63]  Salvador Elías Venegas-Andraca,et al.  Quantum Computation and Image Processing: New Trends in Artificial Intelligence , 2003, IJCAI.

[64]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[65]  A. John Arul Impossibility of comparing and sorting quantum states , 2001 .

[66]  D. Lingaiah Kalman filtering: Theory and practice using MATLAB, 2nd ed [Book Review] , 2003, IEEE Circuits and Devices Magazine.

[67]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[68]  A. TUSTIN,et al.  Automatic Control Systems , 1950, Nature.

[69]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.